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1 Introduction

In [4] an n-dimensional analog of the Pythagorean Theorem is formulated and proved—involving
n − 1 dimensional areas, and not lengths. The authors came across the three-dimensional version
“incidentally,” and only subsequently learned of its history. Indeed, they found the n-dimensional
version predates their paper, originating in [3]. I also happened on the three-dimensional version
of the theorem “incidentally,” in [2], where the following remarks appear:

During the first quarter of the seventeenth century both René Descartes (1596–1650)
and his somewhat older contemporary, John Faulhaber (1580–1635), came across the
trirectangular tetrahedron, that is, the tetrahedron OABC such that the three face
angles of one of its trihedral angles, say O, are all right angles. Both of them knew the
property of such a tetrahedron which is the analog of the Pythagorean theorem, namely,
that the square of the area of the face opposite the vertex O of the “right angle” is equal
to the sum of the squares of the areas of the other three faces.

The proof for the n-dimensional case in [4] is direct and straightforward. The authors note that
in older books of geometry the three-dimensional version was sometimes proved as an application
of vector products. In 1964 I too formulated and proved an n-dimensional analog—my proof, in
fact, begins by generalizing the notion of vector product to n dimensions. Since this alternative
approach may be of some independent interest, I present it here.

2 Terminology and Background

In Rn, m(≤ n) vectors v1, . . . , vm determine the analog of a parallelogram. It consists of all vectors
of the form t1v1 + · · · + tmvm with 0 ≤ ti ≤ 1. We refer to it as the m-dimensional parallelepiped
determined by v1, . . . , vm. According to the classic [1], the square of the (m-dimensional) volume
of this parallelepiped is the determinant |AAT |, where A is the matrix with the coordinates of vi

in row i.
We can also think of the vectors v1, . . . , vm as determining the analog of a triangle. This

consists of all vectors of the form t1v1 + · · · + tmvm where ti ≥ 0 and
∑

ti = 1. We refer to this
as the m-dimensional tetrahedron determined by v1, . . . , vm. The (m-dimensional) volume of the
tetrahedron determined by v1, . . . , vm is 1/m times the volume of the parallelepiped determined
by them.
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3 Cross Products, Generalized

The notion of cross product (or vector product) in R3 is a standard topic in calculus books. For
vectors a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉 the cross-product a× b is sometimes defined to be the
vector whose magnitude is the area of the parallelogram determined by a and b, and with direction
orthogonal to the plane containing a and b (given by what is sometimes called the ‘right-hand
rule’). There is a second characterization: the vector a× b is given by the following determinant.∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k

In evaluating this determinant the usual rules are followed formally—real numbers are multiplied;
numbers times unit vectors are treated as scalar multiplication.

All this is familiar stuff in three dimensions. As it happens, there is a natural analog for higher
dimensions. In Rn+1 think of a cross product as a combination of n vectors.

Definition 3.1 For vectors v1 = 〈v1,1, . . . , v1,n, v1,n+1〉, . . . , vn = 〈vn,1, . . . , vn,n, vn,n+1〉 in Rn+1,
the cross product is

〈〈v1, . . . ,vn 〉〉 =

∣∣∣∣∣∣∣∣∣
e1 . . . en+1

v1,1 . . . v1,n+1
...

...
vn,1 . . . vn,n+1

∣∣∣∣∣∣∣∣∣
where e1, . . . , en+1 are the unit vectors 〈1, 0, . . . , 0〉, . . . , 〈0, 0, . . . , 1〉 respectively.

Proposition 3.2 Let v1, . . . , vn be as above.

1. For a vector w = 〈w1, . . . , wn+1〉

w · 〈〈v1, . . . , vn 〉〉 =

∣∣∣∣∣∣∣∣∣
w1 . . . wn+1

v1,1 . . . v1,n+1
...

...
vn,1 . . . vn,n+1

∣∣∣∣∣∣∣∣∣ .

2. For an orthogonal matrix (transformation) T ,

〈〈v1, . . . , vn 〉〉T = 〈〈v1T, . . . , vnT 〉〉 .

Proof Item 1 is immediate by the definitions of cross and inner products. For item 2 it is enough
to show that w · [ 〈〈v1, . . . ,vn 〉〉T ] = w · 〈〈v1T, . . . ,vnT 〉〉 for any vector w, since then projections on
elements of a basis will be the same. Without loss of generality we can take w to be uT . Now by
part 1, and the properties of orthogonal matrices that |T | = 1 and T preserves inner products, we
have the following.
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uT · 〈〈v1T, . . . ,vnT 〉〉 =

∣∣∣∣∣∣∣∣∣


uT
v1T

...
vnT


∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣


u
v1
...

vn

T

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣


u
v1
...

vn


∣∣∣∣∣∣∣∣∣ |T | =

∣∣∣∣∣∣∣∣∣


u
v1
...

vn


∣∣∣∣∣∣∣∣∣

= u · 〈〈v1, . . . ,vn 〉〉 = uT · [ 〈〈v1, . . . ,vn 〉〉T ]

The following says the cross product generalization also generalizes the three dimensional defi-
nition based on area.

Proposition 3.3 In Rn+1, 〈〈v1, . . . , vn 〉〉 is orthogonal to each vi, and the magnitude of 〈〈v1, . . . , vn 〉〉
is equal to the n-dimensional volume of the parallelepiped determined by v1, . . . , vn.

Proof The orthogonality of vi and 〈〈v1, . . . ,vn 〉〉 is immediate from part 1 of Proposition 3.2.
Part 2 of Proposition 3.2, and the fact that orthogonal transformations preserve lengths, combine

to say that the length of a generalized cross product is preserved under orthogonal transformations.
Consequently in showing the result connecting magnitudes and volumes we can assume that unit
vector en+1 is orthogonal to each of v1, . . . , vn, since we can always rotate about the origin to
effect this state of affairs. Then each vi has an n + 1st component of 0, and consequently

〈〈v1, . . . ,vn 〉〉 =

∣∣∣∣∣∣∣∣∣
e1 . . . en en+1

v1,1 . . . v1,n 0
...

...
...

vn,1 . . . vn,n 0

∣∣∣∣∣∣∣∣∣ = (−1)n

∣∣∣∣∣∣∣
v1,1 . . . v1,n
...

...
vn,1 . . . vn,n

∣∣∣∣∣∣∣ en+1.

The conclusion now follows using the result mentioned in Section 2, from [1], concerning volumes
of parallelepipeds.

4 Generalized Pythagorean Theorem

The space is Rn+1. O is the origin. Pick n + 1 points A1, . . . , An+1, one on each axis, so that
~OAi = aiei where ai > 0. These n + 1 vectors determine an n + 1-dimensional tetrahedron T . The

vertex of T at O is the analog of a right angle. T has n + 2 faces, which are n dimensional—each
face is determined by n vectors of the form ~OAi. (Picturing this with n + 1 = 3 may be of use.)
Call the face that does not contain the origin the hypotenuse face. The following is from [4].

Theorem 4.1 The square of the n dimensional volume of the hypotenuse face of T is equal to the
sum of the squares of the n dimensional volumes of the other n + 1 faces.
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Proof The n dimensional parallelepiped determined by ~OA1, . . . , ~OAi−1, ~OAi+1, . . . , ~OAn+1

has an n-dimensional analog of a right angle at the origin, and so its n-dimensional volume is
a1 · · · ai−1ai+1 · · · an+1. Then the n-dimensional volume of the face of T determined by ~OA1, . . . ,

~OAi−1, ~OAi+1, . . . , ~OAn+1 is 1/n of that. It follows that the sum of the squares of the volumes of
the n + 1 non-hypotenuse faces is

1
n2

n+1∑
j=1

n+1∏
i=1,i6=j

a2
i

It must be shown that this is also the square of the volume of the hypotenuse face.
The hypotenuse face is determined by n vectors, but this can be done in more than one way.

Here is one choice.

v1 = ~OA1 − ~OA2 = 〈a1,−a2, 0, . . . , 0〉
v2 = ~OA1 − ~OA3 = 〈a1, 0,−a3, . . . , 0〉

...

vn = ~OA1 − ~OAn+1 = 〈a1, 0, 0, . . . ,−an+1〉

By Proposition 3.3, the volume of the hypotenuse face is 1
n times the magnitude of 〈〈v1, . . . ,vn 〉〉 .

So what must be shown is the following.

| 〈〈v1, . . . ,vn 〉〉 |2 =
n+1∑
j=1

n+1∏
i=1,i6=j

a2
i (1)

The expansion of 〈〈v1, . . . ,vn 〉〉 using Definition 3.1 has the form X1e1 + · · ·+ Xn+1en+1 where
each Xi is an n× n determinant. The claim is that determinant Xi evaluates to

∏n+1
i=1,i6=j ai (up to

a factor of ±1), which will give us the result.
The determinant X1 has 0’s above the main diagonal and −a2, −a3, . . . , −an+1 along the

main diagonal, so it evaluates to (−1)n(a2a3 · · · an+1). The other determinants are different than
this, but similar to each other—as a representative case, take n to be 4, and consider X4. Since
exchanging two rows in a determinant changes its sign, we have the following.

X4 = −

∣∣∣∣∣∣∣∣
a1 −a2 0 0
a1 0 −a3 0
a1 0 0 0
a1 0 0 −a5

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
a1 0 0 0
a1 −a2 0 0
a1 0 −a3 0
a1 0 0 −a5

∣∣∣∣∣∣∣∣ = a1a2a3a5
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