Pythagoras' Theorem for Areas - Revisited

Melvin Fitting
Dept. Mathematics and Computer Science
Lehman College (CUNY), Bronx, NY 10468
e-mail: fitting@lehman.cuny.edu
web page: comet.lehman.cuny.edu/fitting

July 19, 2001

1 Introduction

In [4] an n-dimensional analog of the Pythagorean Theorem is formulated and proved-involving $n-1$ dimensional areas, and not lengths. The authors came across the three-dimensional version "incidentally," and only subsequently learned of its history. Indeed, they found the n-dimensional version predates their paper, originating in [3]. I also happened on the three-dimensional version of the theorem "incidentally," in [2], where the following remarks appear:

During the first quarter of the seventeenth century both René Descartes (1596-1650) and his somewhat older contemporary, John Faulhaber (1580-1635), came across the trirectangular tetrahedron, that is, the tetrahedron $O A B C$ such that the three face angles of one of its trihedral angles, say O, are all right angles. Both of them knew the property of such a tetrahedron which is the analog of the Pythagorean theorem, namely, that the square of the area of the face opposite the vertex O of the "right angle" is equal to the sum of the squares of the areas of the other three faces.

The proof for the n-dimensional case in [4] is direct and straightforward. The authors note that in older books of geometry the three-dimensional version was sometimes proved as an application of vector products. In 1964 I too formulated and proved an n-dimensional analog-my proof, in fact, begins by generalizing the notion of vector product to n dimensions. Since this alternative approach may be of some independent interest, I present it here.

2 Terminology and Background

In $\mathbb{R}^{n}, m(\leq n)$ vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ determine the analog of a parallelogram. It consists of all vectors of the form $t_{1} \mathbf{v}_{1}+\cdots+t_{m} \mathbf{v}_{m}$ with $0 \leq t_{i} \leq 1$. We refer to it as the m-dimensional parallelepiped determined by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$. According to the classic [1], the square of the (m-dimensional) volume of this parallelepiped is the determinant $\left|A A^{T}\right|$, where A is the matrix with the coordinates of \mathbf{v}_{i} in row i.

We can also think of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ as determining the analog of a triangle. This consists of all vectors of the form $t_{1} \mathbf{v}_{1}+\cdots+t_{m} \mathbf{v}_{m}$ where $t_{i} \geq 0$ and $\sum t_{i}=1$. We refer to this as the m-dimensional tetrahedron determined by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$. The (m-dimensional) volume of the tetrahedron determined by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ is $1 / m$ times the volume of the parallelepiped determined by them.

3 Cross Products, Generalized

The notion of cross product (or vector product) in \mathbb{R}^{3} is a standard topic in calculus books. For vectors $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ the cross-product $\mathbf{a} \times \mathbf{b}$ is sometimes defined to be the vector whose magnitude is the area of the parallelogram determined by \mathbf{a} and \mathbf{b}, and with direction orthogonal to the plane containing \mathbf{a} and \mathbf{b} (given by what is sometimes called the 'right-hand rule'). There is a second characterization: the vector $\mathbf{a} \times \mathbf{b}$ is given by the following determinant.

$$
\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
$$

In evaluating this determinant the usual rules are followed formally-real numbers are multiplied; numbers times unit vectors are treated as scalar multiplication.

All this is familiar stuff in three dimensions. As it happens, there is a natural analog for higher dimensions. In \mathbb{R}^{n+1} think of a cross product as a combination of n vectors.

Definition 3.1 For vectors $\mathbf{v}_{1}=\left\langle v_{1,1}, \ldots, v_{1, n}, v_{1, n+1}\right\rangle, \ldots, \mathbf{v}_{n}=\left\langle v_{n, 1}, \ldots, v_{n, n}, v_{n, n+1}\right\rangle$ in \mathbb{R}^{n+1}, the cross product is

$$
\left.\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle\right\rangle=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \ldots & \mathbf{e}_{n+1} \\
v_{1,1} & \ldots & v_{1, n+1} \\
\vdots & & \vdots \\
v_{n, 1} & \ldots & v_{n, n+1}
\end{array}\right|
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n+1}$ are the unit vectors $\langle 1,0, \ldots, 0\rangle, \ldots,\langle 0,0, \ldots, 1\rangle$ respectively.
Proposition 3.2 Let $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be as above.

1. For a vector $\boldsymbol{w}=\left\langle w_{1}, \ldots, w_{n+1}\right\rangle$

$$
\boldsymbol{w} \cdot\left\langle\left\langle\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\rangle\right\rangle=\left|\begin{array}{ccc}
w_{1} & \ldots & w_{n+1} \\
v_{1,1} & \ldots & v_{1, n+1} \\
\vdots & & \vdots \\
v_{n, 1} & \ldots & v_{n, n+1}
\end{array}\right|
$$

2. For an orthogonal matrix (transformation) T,

$$
\left\langle\left\langle\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\rangle\right\rangle T=\left\langle\left\langle\boldsymbol{v}_{1} T, \ldots, \boldsymbol{v}_{n} T\right\rangle\right\rangle .
$$

Proof Item 1 is immediate by the definitions of cross and inner products. For item 2 it is enough to show that $\mathbf{w} \cdot\left[\left\langle\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle\right\rangle T\right]=\mathbf{w} \cdot\left\langle\left\langle\mathbf{v}_{1} T, \ldots, \mathbf{v}_{n} T\right\rangle\right.$ for any vector \mathbf{w}, since then projections on elements of a basis will be the same. Without loss of generality we can take \mathbf{w} to be $\mathbf{u T}$. Now by part 1, and the properties of orthogonal matrices that $|T|=1$ and T preserves inner products, we have the following.

$$
\begin{aligned}
\mathbf{u} T \cdot\left\langle\left\langle\mathbf{v}_{1} T, \ldots, \mathbf{v}_{n} T\right\rangle\right. & =\left|\left[\begin{array}{c}
\mathbf{u} T \\
\mathbf{v}_{1} T \\
\vdots \\
\mathbf{v}_{n} T
\end{array}\right]\right|=\left|\left[\begin{array}{c}
\mathbf{u} \\
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{n}
\end{array}\right] T\right| \\
& =\left|\left[\begin{array}{c}
\mathbf{u} \\
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{n}
\end{array}\right]\right||T|=\left|\left[\begin{array}{c}
\mathbf{u} \\
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{n}
\end{array}\right]\right| \\
& =\mathbf{u} \cdot\left\langle\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle\right\rangle=\mathbf{u} T \cdot\left[\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle T\right]
\end{aligned}
$$

The following says the cross product generalization also generalizes the three dimensional definition based on area.

Proposition 3.3 In $\mathbb{R}^{n+1},\left\langle\left\langle\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\rangle\right.$ is orthogonal to each \boldsymbol{v}_{i}, and the magnitude of $\left\langle\left\langle\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\rangle\right.$ is equal to the n-dimensional volume of the parallelepiped determined by $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$.

Proof The orthogonality of \mathbf{v}_{i} and $\left\langle\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle\right.$ is immediate from part 1 of Proposition 3.2.
Part 2 of Proposition 3.2, and the fact that orthogonal transformations preserve lengths, combine to say that the length of a generalized cross product is preserved under orthogonal transformations. Consequently in showing the result connecting magnitudes and volumes we can assume that unit vector \mathbf{e}_{n+1} is orthogonal to each of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, since we can always rotate about the origin to effect this state of affairs. Then each \mathbf{v}_{i} has an $n+1$ st component of 0 , and consequently

$$
\left.\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle\right\rangle=\left|\begin{array}{cccc}
\mathbf{e}_{1} & \ldots & \mathbf{e}_{n} & \mathbf{e}_{n+1} \\
v_{1,1} & \ldots & v_{1, n} & 0 \\
\vdots & & \vdots & \vdots \\
v_{n, 1} & \ldots & v_{n, n} & 0
\end{array}\right|=(-1)^{n}\left|\begin{array}{ccc}
v_{1,1} & \ldots & v_{1, n} \\
\vdots & & \vdots \\
v_{n, 1} & \ldots & v_{n, n}
\end{array}\right| \mathbf{e}_{n+1}
$$

The conclusion now follows using the result mentioned in Section 2, from [1], concerning volumes of parallelepipeds.

4 Generalized Pythagorean Theorem

The space is \mathbb{R}^{n+1}. O is the origin. Pick $n+1$ points A_{1}, \ldots, A_{n+1}, one on each axis, so that $O \vec{A}_{i}=a_{i} \mathbf{e}_{i}$ where $a_{i}>0$. These $n+1$ vectors determine an $n+1$-dimensional tetrahedron T. The vertex of T at O is the analog of a right angle. T has $n+2$ faces, which are n dimensional-each face is determined by n vectors of the form $O \vec{A}_{i}$. (Picturing this with $n+1=3$ may be of use.) Call the face that does not contain the origin the hypotenuse face. The following is from [4].

Theorem 4.1 The square of the n dimensional volume of the hypotenuse face of T is equal to the sum of the squares of the n dimensional volumes of the other $n+1$ faces.

Proof The n dimensional parallelepiped determined by $O \vec{A}_{1}, \ldots, O \overrightarrow{A_{i-1}}, O \overrightarrow{A_{i+1}}, \ldots, O \overrightarrow{A_{n+1}}$ has an n-dimensional analog of a right angle at the origin, and so its n-dimensional volume is $a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n+1}$. Then the n-dimensional volume of the face of T determined by $O \vec{A}_{1}, \ldots$, $O \overrightarrow{A_{i-1}}, O \overrightarrow{A_{i+1}}, \ldots, O \overrightarrow{A_{n+1}}$ is $1 / n$ of that. It follows that the sum of the squares of the volumes of the $n+1$ non-hypotenuse faces is

$$
\frac{1}{n^{2}} \sum_{j=1}^{n+1} \prod_{i=1, i \neq j}^{n+1} a_{i}^{2}
$$

It must be shown that this is also the square of the volume of the hypotenuse face.
The hypotenuse face is determined by n vectors, but this can be done in more than one way. Here is one choice.

$$
\begin{gathered}
\mathbf{v}_{1}=O \vec{A}_{1}-O \vec{A}_{2}=\left\langle a_{1},-a_{2}, 0, \ldots, 0\right\rangle \\
\mathbf{v}_{2}=O \vec{A}_{1}-O \vec{A}_{3}=\left\langle a_{1}, 0,-a_{3}, \ldots, 0\right\rangle \\
\vdots \\
\mathbf{v}_{n}=O \vec{A}_{1}-O \overrightarrow{A_{n+1}}=\left\langle a_{1}, 0,0, \ldots,-a_{n+1}\right\rangle
\end{gathered}
$$

By Proposition 3.3, the volume of the hypotenuse face is $\frac{1}{n}$ times the magnitude of $\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle$. So what must be shown is the following.

$$
\begin{equation*}
\left.\left|\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle\right\rangle\right|^{2}=\sum_{j=1}^{n+1} \prod_{i=1, i \neq j}^{n+1} a_{i}^{2} \tag{1}
\end{equation*}
$$

The expansion of $\left\langle\left\langle\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\rangle\right.$ using Definition 3.1 has the form $X_{1} \mathbf{e}_{1}+\cdots+X_{n+1} \mathbf{e}_{n+1}$ where each X_{i} is an $n \times n$ determinant. The claim is that determinant X_{i} evaluates to $\prod_{i=1, i \neq j}^{n+1} a_{i}$ (up to a factor of ± 1), which will give us the result.

The determinant X_{1} has 0's above the main diagonal and $-a_{2},-a_{3}, \ldots,-a_{n+1}$ along the main diagonal, so it evaluates to $(-1)^{n}\left(a_{2} a_{3} \cdots a_{n+1}\right)$. The other determinants are different than this, but similar to each other - as a representative case, take n to be 4 , and consider X_{4}. Since exchanging two rows in a determinant changes its sign, we have the following.

$$
X_{4}=-\left|\begin{array}{cccc}
a_{1} & -a_{2} & 0 & 0 \\
a_{1} & 0 & -a_{3} & 0 \\
a_{1} & 0 & 0 & 0 \\
a_{1} & 0 & 0 & -a_{5}
\end{array}\right|=-\left|\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
a_{1} & -a_{2} & 0 & 0 \\
a_{1} & 0 & -a_{3} & 0 \\
a_{1} & 0 & 0 & -a_{5}
\end{array}\right|=a_{1} a_{2} a_{3} a_{5}
$$

References

[1] G. Birkhoff and S. Mac Lane. A Survey of Modern Algebra. Macmillan, 1941, revised 1953, 1965.
[2] N. A. Court. The tetrahedron and its altitudes. Scripta Mathematica, 14:85-97, 1948.
[3] P. S. Donchian and H. S. M. Coxeter. An n-dimensional extension of Pythagoras' Theorem. Math. Gazette, 19:206, 1935.
[4] J.-P. Quadrat, J. B. Lassere, and J.-B. Hiriart-Urruty. Pythagoras' theorem for areas. American Mathematical Monthly, 108:549-551, 2001.

