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Abstract

The higher dimensional generalization of the cross product is associated with an adequate matrix
multiplication. This coordinate-free view allows for a better understanding of the underlying algebraic
structures, among which are generalizations of Grassmann’s, Jacobi’s and Room’s identities. Moreover,
such a view provides a the higher dimensional analogue of the decomposition of the vector Laplacian
which itself gives an explicit coordinate-free Helmholtz decomposition in arbitrary dimensions n > 2.
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1 Introduction

The interplay between different differential operators is at the basis not only of pure analysis but also
in many applied mathematical considerations. One possibility is to study instead of the properties of a
linear homogeneous differential operator with constant coefficients

A= AqV© (1.1a)
|a|=k
where @ = (a1,...,0,)7 € NP is a multi-index of length |af = a1 + ... + an,

V& =09 ...0% and A € RYX™ its symbol

A) = ) Agb™ e RV, (1.1b)
|o|=k
where we used the notation 6% = b - ... - b2 for b € R". Note that A : C(Q,R™) — CZ(Q,RY)

with © C R” open and we obtain for all a € C2°(2,R™) also the expression Aa = A(Da) with A €
Lin(R™*™ RY). The approach to look and algebraically operate with the vector differential operator V
in a manner of a vector is also referred as vector calculus or formal calculations.

An example of such differential operator is the derivative D itself, but also div, curl, A or inc. One of
the most prominent relation in vector calculus is curl V¢ = 0 for scalar fields ¢ € C°(Q2), Q C R? open,
which from an algebraic point of view reads b x b = 0 for all b € R? (where a scalar factor can be and was
omitted).

Here, we focus on a higher dimensional analogue of the curl or rather on the study of the underlying
generalized cross product. An extension of the usual cross product of vectors in R3 to vectors in R"
depends on the properties one requires to hold. The three basic properties of the vector product are: the
bilinearity in both arguments, that the vector a x b is perpendicular to both a,b € R3 (and, thus belongs to
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the same space) and that its length is the area of the parallelogram spanned by a and b. Gibbs uses these
properties also to define the cross product, see [6, Chapter II]. It turns out, that such a vector product
exists only in three and seven dimensions, cf. [17]. However, the 7-dimensional vector product does not
satisfy Jacobi’s identity but rather a generalization of it, namely the Malcev identity, cf. [3, p. 279] and
the references contained at the end of the section therein. We will not follow those constructions here
and will generalize the cross product to all dimensions dropping one of its basic properties instead. These
considerations are usually done using coordinates. However, we will dwell on its coordinate-free view which
offers a better understanding of the underlying algebraic structures. Such a view already turned out to
be very fruitful in extending Korn inequalities for incompatible tensor fields to higher dimensions, cf. [15]
where first thoughts in that matrix representations have been investigated. However, we will catch up here
with the underlying algebraic structures, among which are generalizations of Grassmann’s, Jacobi’s and
Room’s identities. Moreover, such a view provides a the higher dimensional analogue of the decomposition
of the vector Laplacian which itself gives an explicit coordinate-free Helmholtz decomposition in arbitrary
dimensions n > 2.

2 Notations

As usual . ® . and (.,.) denote the dyadic and the scalar product, respectively. The space of symmetric
(n x n)-matrices will be denoted by Sym(n) and the space of skew-symmetric (n x n)-matrices by so(n).
We will use lower-case Greek letters to denote scalars, lower-case Latin letters to denote column vectors
and upper-case Latin letters to denote matrices, with two exceptions for the dimensions: if not otherwise
stated we have n,m, N € N and n > 2. The identity matrix will be denoted by I,,. sym P, skew P and
PT denote the symmetric part, the skew-symmetric part and the transpose of a matrix P, respectively.

3 Algebraic view of “the” generalized cross product

3.1 Inductive introduction

From an algebraic point of view the components of the cross product a x b are of the form «;3; — o;8; for
1 <i < j <3 sorted (and multiplied with —1) in such a way that the resulting vector is perpendicular to
both a and b. For a general n € N we have @ combinations of the form «;3; —a;3; with 1 <i < j<n
and only for n = 3 this number corresponds with the space dimension. So, we will drop the orthogonality
condition and consider a generalized cross product x,, in all dimensions n > 2 which is anti-commutative,

bilinear and whose length is the area of the parallelogram spanned by a and b (see (3.9) below):

ay ffa — s By
a1 83— ag B
ag B3 — ag B2
axXp,b=|™ Ba — au B for a = (ai)izl,...,na b= (ﬁi)izlw,’n € R™ (31)
g B4 — ay B2
a3 B4 — oy B3

Thus, using the following notation
b=(b,B,)" €R" withbeR"! (3.2)

the generalized cross product X, is inductively given by

@ Xp_1b n(n—1) <a1> <51>
aXpbi= _| eR 2 where X =« — g (1, 3.3
<ﬁn'a—an-b> s ) X2\ 3, 1082 — a2 51 (3.3)

wherefrom the bilinearity and anti-commutativity follow immediately.




3.2 Relation to skew-symmetric matrices
To establish the connection of the generalized cross product a x,, b to the entries of skew(a ® b) we start
n(n—1)
with the following bijection a,, : so(n) — R~ 2 : given by
an(A) = (0112, 13,23, ...y AIpy ...y Oz(nfl)n)T (3.4&)

n(n—1)
for A = (aj)ij=1,..n € 50(n), as well as its inverse A, : R~ 2z — so(n), so that

Ay (a,(A)=A V A€eso(n) and -
an(mn(a)) =a Vac Rn(nz_l) ( . )

T n(n—
and for a = <a1, e ,an(n_l)) eR 5 in coordinates it looks like
2
0 oq g oy
—q 0 a3 Qs
Q[n(a) - —Q2 —Q3 0 Qg (3 5)
—Qy4 —OQ5 —0g 0
0
Thus, the generalized cross product a X, b can be written as
axXpb=a,(a®b—-b®a), (3.6a)
or, equivalently, it holds
Ap(axp,b)=a®@b—-0b®a for a,b € R™. (3.6b)

3.3 Lagrange’s identiy

However, the inductive definition (3.3) can be used to directly deduce an analogue to Lagrange’s identity:
(a Xy, b,c xp dy = {(a,c)(b,d) — (a,d){b,c) Va,b,c,deR™ (3.7)

Indeed, in n = 2 dimensions we have

<<Z;) X2 <g;> ; <z;> X2 (g;>> = (a1 B2 — a2 B1) (7162 — 72 61)

= a1 Bay1 02 + g B1 7201 — a1 B2 y2 01 — a2 171 02
= (a171 + a272)(B101 + P202) — (a1 61 + a2 62)(Br 71 + P272)

() () (- () () ()

Furthermore, with a = (@, a,)”,b = (b, 8.)7, ¢ = (¢,7.)",d = (d,6,,)T we obtain on one hand

EXn_lg EXn_la
(a Xpb,e Xy d)y = _. _D
/Bn'a_an'b 5n'6_7n'd

= <a Xn—1 576 Xn—1 8> + Bn 5n<a76> + an 7n<578> - Bn ’Yn<aaa> — Qp 5n<b76>7



and on the other hand:
<a7 C) <b7 d> - <a7 d> <ba C> = (38)

= ((@,2) + an 1) (b, d) + B 6) — (@, d) + e 0n) ((,€) + By vn)
= <av E) (57 a> - <5, a> <B7 6> + Bn On <5, E> +ann <Bv a) — BnMn <5, E> — Qi Oy <Bv E>,

so that (3.7) follows by induction over n € N | n > 2. Especially, for ¢ = a and d = b we obtain for the
squared norm of the generalized cross product

la xn B> X all? [B]% = (@, 5) ¥ a,be R (3.9)

meaning that the length of a x,, b is equal to the area of the parallelogram spanned by the vectors a and
b.
Two (non-zero) vectors a,b € R™ are linearly dependent (and thus parallel) if and only if a x,, b = 0.

3.4 Matrix representation

It is well known, that an identification of the usual cross product x with an adequate matrix multiplication
facilitated some of the common proofs in vector algebra and allowed to extend the cross product of vectors
to a cross product of a vector and a matrix, cf. [19, 8, 21, 13]. It will be our next goal to achieve a similar
identification of the generalized cross product x, with a corresponding matrix multiplication. Indeed,
since for a fixed a € R” the operation a X,, . is linear in the second component there exists a unique matrix

n(n—1)
denoted by [a], € R™2 *" such that

axpb=:[a], b  VbeR" (3.10)

In view of (3.3) the matrices [.],, can be characterized inductively, and for a = (@, a,)” the matrix [a]
has the form

[[a]]Xn,1 O
[a],., = ...... where H(Z;)ﬂ = (—a2, a1), (3.11)
. X
—ap-Iy1 1 @ ’
so that
as 0
aq :
32 e 0 oy etc. (3.12)
3/l 0 —a3:m

Remark 3.1. The entries of the generalized cross product a x3 b, with a,b € R3, are permutations (with
a sign) of the entries of the classical cross product a x b. Recall, that the operation a x . can be identified
with a multiplication with the skew-symmetric matrix

0 —Qs3 (6%)
Anti(a) = | a3 0 —-o (3.13)
—Q (051} 0
which differs from the expression [a],, for a = (a1, az, a3)T and also form 2A3(a) which reads
0 (051} a9
As(a) = -1 0 a3z . (3.14)

—Q2 —Q3 0

Indeed, also the notations T, , W(a) or even [a]x are used for Anti(a), however, the latter emphasizes
that we deal with a skew-symmetric matrix.



Remark 3.2. Also the 7-dimensional vector product a x . for a € R” (which differs from a x7.) can be
represented by a multiplication with a skew-symmetric matrix from so(7), see [11, 12, 2].

3.5 Scalar triple product

. n(n-1) . .
Since X, : R® x R® - R~ 2 it does not make sense to think of an analogue of a scalar triple product

with three vectors coming from the same vector space but rather instead:

(a,b xn ¢) = (a,[], c) = ([B]% a,c) VacR™Z", bcecR, (3.15a)
so that with ¢ = b we have:
(1Y ab) =0 VaecR™T, beR™ (3.15D)

Note the slight difference to the case of the usual cross product. The latter can be represented by
through a multiplication with a square skew-symmetric matrix whereas the generalized cross product
through matrices of the form (3.11) whom are wether square matrices (except the case n = 3) nor skew-
symmetric. So, in the case of the usual cross product we regain after swapping the matrix in the triple
scalar product again the considered matrix (with a changed sign):

(a,b x ¢) = (a, Anti(b) ¢) = —(Anti(b) a,c) = (a x b,¢), a,b,c € R, (3.16)
On the contrary, in the case of the generalized cross product, we have to deal with matrices [[.]]Xn, see
(3.15). Such matrices will be very important in the subsequent considerations.
3.6 Grassmann’s identity

Also in a generalization of a vector triple product we cannot consider the double appearance of the
generalized cross product but as in the generalization of the scalar triple focus on the matrix [.] «,- Thus,
as a generalization of Grassmann’s identity we obtain for a, b, c € R" instead:

[al% (bxnc)=(a,b) c—(a,c) b= ((bya) I, —b®a)c (3.17)
= (c@b—b@c)a(s:ﬁ) —Apn (b xpc)a € R™

Indeed, to establish the first equality (3.17); in n = 2 dimensions we consider
—a b1 \\ _ [~ _ (a2 B2 — a2 By
(o) () () = () o= = (00
(e (B (m) (o) (m), (B
() G- () - G) () () o

Furthermore, with a = (@, a,,)”,b = (b, 3,)7, ¢ = (¢,7)" we obtain on one hand

[[a]]z:n—l é_an'lnfl _ B
T . bXn,16
[a]” (bxne)= | ( ” )
0 - 7n'b_ﬁn'c
. a

_ <[[a]]£n1 (5 Xn—1 C)"’anﬁn'c_an’)/n'b) (319)

Tn <aa B> — Bn (E, E>



and on the other hand:

e o= <ﬁ">a<> (o) G- (2)

_( (@,b) -¢—(a,c) - b+ an B - c—ozn’yn-b>
- (@,5) v — (@2)

so that (3.17); follows by induction over n € N, n > 2.

3.7 Jacobi’s identity

We obtain the following generalization of Jacobi’s identity:

[a]l (bxne)+[b]L (e xna)+ [ (ax,b) "="0 VabececR"
or, equivalently:
Ap(bxpc)a+An(cxpa)b+Ay(a x, b)c ="0.
Surely, relation (3.17) can also be used to obtain (3.7).
3.8 Cross product with a matrix

Furthermore, the generalized cross product can be written as

T
axnb=-bxpa=[-b], a= (aT [[—b]]zn>

(3.20)

(3.21a)

(3.21D)

(3.22)

this allows us to define a generalized cross product of a vector b € R™ and a matrix P € R™*" from the

right and with a matrix B € R™*™ from the left, where m € N, via
1)

P Xn b = _P [[_b]]zgn c Rmx n(nQ_

seen as row-wise cross product,

and

bxn B:=[0],,

seen as column-wise cross product,
and they are connected via
(bxn B =BT [b]y =-B" x,b ¥ BeR™™ beR"
So, especially for the identity matrix P = I,, we obtain
Iy xpb=[-b]% and bx, I, =[b], .

Moreover, for a € R™ and b, ¢ € R™ it follows

(@®b) xnc=abl [-L =a([-c], T =a(—cx, b =a® (b x,0),

and, especially, for ¢ = b:
(a®b) X, b=0 foralla € R™ and all b € R".

As consequence we obtain for a,b € R™:

(3.25b)

(b®a) x,b 2-sym(a ®b) X, b=—2-skew(a®b) X, b

(3. 25a) (3. )

bR (ax,b) = 2-b® ay(skew(a ®b)).

(3.23a)

(3.23b)

(3.23¢)

(3.24)

(3.25a)

(3.25D)

(3.25¢)



3.9 Another vector triple

Already in the scalar triple product we came across with the expression [[b]]zn a € R". Hence, we may

consider also the following vector triple product for a € R~ 2 and b,c € R™:

([[b]]’;fn a) X €= [[[[bﬂi’n aﬂx ¢

n

n(n—1)

= —cxn [B]L a=—[c], [B]% a=([cy, xnb)a €R = (3.26)

Again, the corresponding relations to (3.17) and (3.26) for the usual cross product coincide where the
situation is different for the generalized cross product due to the non-symmetry of the corresponding
matrices. An inductive view on the appearing matrix in (3.26) shows for all a,b € R™:

laly, %nb=[al, [-b]%, =

[[EHX”_l Xn-1b Bn . [[a]]X"_l n(n-1) , n(n-1)

e T ...... e cR™ 2 T, (327)

Qn [[ ]]Xn—l _a®b_an/8n In—l

and, especially, for a = b:
-1
I, 0= - B, B, € Sy ("2, (3.2
Consequently, we may also consider the following matrix multiplication:

PL, €R™™  for PeR™ T (3.29)

and, like in (3.23), related by transposition also [[b]]z:n (.) for an (@ X m) -matrix.

3.10 Room’s identity

Surely, the considerations in the previous subsections were inspired by the corresponding relations known
for the usual cross product. So, from the usual Grassmann’s identity one can deduce the usual Jacobi’s
and Lagrange’s identities. Moreover, the usual Grassmann’s identity for the vector triple allows also to

conclude
Anti(a) Anti(b) = Anti(a) x b=b®a — (a,b) - I3 Y a,be R (3.30)

This algebraic relation is already contained in [19, p. 691 (ii)]. For that reason let us call it Room’s
identity. This relation (3.30) turned out to be very important also from an application point of view,
cf. [13, 14] and the references contained therein.

Returning to the n-dimensional case, we have for arbitrary a,b € R™:

[l 1], = =[a% (bxnz) 2" ((ha) I, —b®a)z VaeR", (3.31)
so that as an analogue to Room’s identity it follows
[all [bly, = (ba) I —b®aeR™™  VabeR" (3.32)

and, especially, for a = b:
1%, oD, = lIbl]* - I, —b® b € Sym(n) . (3.33)

X

Interchanging the roles of a and b in (3.32) we further deduce

[, B, — 1%, [al,, =a®b—bea = 2(ax, b). (3.34)

7



Since tr(a®b) = (a, by, the expression (3.32) shows, that the entries of [[a}]zn [b], are linear combinations
of the entries of the dyadic product a ® b. Again, also the converse holds true:

_ [l [l
n—1

b®a Iy — [alk [l (3.35)

where we leave it as an exercise for the reader to verify (e.g., by induction) that

tr([a]l, [b],,) = ([, . [b],,) = (n —1)(a,b). (3.36)

Recall, that the associated matrix Anti(.) with the usual cross product x in R? is a (skew-symmetric)
square matrix, whereas the associated matrix [.], ~with the generalized cross product xj is an (@ X
n)-matrix and, thus, only for n = 3 a square matrix. Hence, despite of the situation in Room’s iden-
tity (3.30) we may also interchange the matrices in its n-dimensional analogue (3.32), i.e., consider the
expression in (3.26).

Returning to the usual Room’s identity we have

Anti(a) x b= L(a®b) and a®b= L(Anti(a) xb) V a,bec R3. (3.37a)

On one hand, we associate with the matrix Anti(.) a representation of the cross product. Room’s identity
can be generalized to higher dimensions in three different ways. We have already seen in (3.32) and (3.35)
an extension to:

[al% [b],, =L(a®b) and a®b=L([a]% [b], ) V¥ a,beR" (3.37D)

Xn

However, a similar result to (3.37a) also holds true for the generalized cross product of the matrix coming
from the matrix representation of the generalized cross product with a vector, see [15]:

la]y, xnb=L(a®b) Va,beR"n>2

(3.37¢)
and a®b=L([a], *xnb) YabeR" n>3.
These cover also the case of a X, [[b]]zn = [a],, [[b}]zn = —[a] ., xn b, which for n = 2 is just a scalar.
On the other hand, Room’s identity can also be seen as an expression for the cross product of a
skew-symmetric matrix with a vector:

Axb=L(axl(A) ®b) and axl(A)@b=L(Axb) YV Acso(3),bcR> (3.372")

where axl : s0(3) — R3 denotes the inverse of Anti(.). Interestingly, a similar result holds true for
(n X n)-skew symmetric matrices in all dimensions n > 2, see [15]:

A xpb=L(a,(A) ®0)

3.37d
and a,(A)®@b=L(Ax,b) V Aecso(n),beR", ( )

where (3.37¢); and (3.37d); follow directly from the definition of the generalized cross product of a matrix
and a vector but for (3.37¢)2 and (3.37d)2 inductive proofs are needed, cf. [15].

Remark 3.3. We have seen, that Room’s identity (3.30) admits three different generalizations to higher
dimensions (3.37b), (3.37c), (3.37d) which coincide when considering the usual cross product and the
associated matrix to it since the latter is a skew-symmetric (square) matrix. However, Grassmann’s and
Jacobi’s identities generalize only in the ways presented in (3.17) and (3.21) which are comparable to the
situation considering the usual triple vector product ax (bx¢) = Anti(a) (bxc) since Anti(a)’ = — Anti(a).



3.11 Simultaneous cross product

Of special interest is a simultaneous cross product of a square matrix P € R™*" and a vector b € R" from

both sides:
bxa Pxnb=[bl,, PI-bIT, “E — (P xn )" x,0)"

where, due to the associativity of matrix multiplication, we can omit parenthesis. Since

T (3.38)

(b Xy P xp, b) — bl PT[-b]L =bx, PT x, b

it follows for S € Sym(n) and A € so(n):

bxnsxnbesym<”(”2_1)> and banxnb€50<n(n2_1)>

but also for all P € R™"*";

b Xy symP x, b=sym(bx, Px,b), bx,skewP X, b=skew(bx, P x,b).

For P = I,, the identity matrix we obtain

b Xn In Xn b= [[b]]xn Hibﬂzn (328) [[b]]x'” n b < Sym(n(n2_1)> .

Moreover, for a,b,c € R™ it follows

bxn (@® ) xnb PZY (b x1a) ® (¢ xn b),

and, especially, for ¢ = b

bXp(a®b) xp,b=>bxy, (b®a)x,b
=b X, sym(a ®b) X, b ="b %, skew(a ®b) x,, b =0.

. n(n—1) _ n(n—1) .
Furthermore, for a square matrix 8 € R~ 2z *~ 2 and a vector b € R” we obtain

[, R [B,, € R,
which has comparable properties to the simultaneous cross product above, for instance:
T
T T
(1%, B Bl,,) = BI%, $7 B,

which gives:
sym ([e%, B Pl ) = 1%, sym B[,

as well as

skew ([o]%, B [0l ) = [b1%, skew F o],
And for the identity matrix 8 = I.»n—1) we obtain:
2

(3.33)
1%, Laos (8], = B, B, 2 102 1 — b,

(3.38)

(3.39a)

(3.39D)

(3.39¢)

(3.40)

(3.41a)

(3.41D)

(3.42)

(3.43a)

(3.43b)

(3.43¢)

(3.44)

Again, the corresponding expressions to (3.38) and (3.42) coming from the usual cross product just

coincide.



4 Differential operators

Let us now come back to the interplay between a linear homogeneous differential operator with constant
coefficients and its symbol, thus, replacing b by the vector differential operator V in the algebraic relation
presented in the previous section. For that purpose let @ C R™ be open, n > 2 and n,m € N. As usual,
the derivative and the divergence of a vector field rely on the dyadic product and the scalar product,
respectively:

Da=a®V € CXQ,R™")  forac CX(Q,R™),

4.1
diva == (a,V) = a’V = tr(Da) € C°(, R) for a € CZ°(Q,R"), (1)

where the latter generalizes to a matrix divergence which is taken row-wise:
DivP =PV € CX(Q2,R™) for P € C2°(Q,R™ ™). (4.2)

Similarly, the generalized curl is related to the generalized cross product via

curl,a = a x,, (=V) =V xpa=[V], a
(3.6) n(n—1) (4.3)
=" ap(skewDa) € CF(Q,R™ 2 ) for a € CZ°(Q,R"),

where the latter expression which is usually considered in coordinates to introduce the generalized curl.
Furthermore, we consider the new differential operation

n(n—1)

[VIL a€ CR(QRY) forae CX(QR 2 ), (4.4)
which differs from curl,m,-1 a also in the three-dimensional case:
2
o1 O1ag — Oharq a1 —Oyav; — D309
curlg (5] = 810(3 - 630&1 5 [[V]]Z3 (6% = 81041 — 63013 . (4.5)
as a3 — O30e2 ag O1ag + Dhag

To the best of our knowledge, the operator [[V]]Zn : CSO(Q,RM”T&) — C°(,R™) has not attracted
attention in the literature so far, also not in coordinates. However, that differential operator plays the
counterpart in the partial integration formula for the generalized curl,, see (4.29a) below. The further
differential operator appears here since the associated matrix to the generalized cross product has no
symmetry.

Furthermore, it is the matrix representations of the cross product which allows us to introduce also a
row-wise generalized matrix curl operator:

Curl, P = P x, (V) “ZY P[V]T  for P e C2(0, R™™), (4.6)
which is connected to the the column-wise differential operation:

V x, B =[], B®ZE) [cwl, BT]"  for Be (@R, (4.7)
and like in the three dimensional setting can be referred as Curl?l.

Moreover, the matrix representation of the curl operation offers also a further differential operator
n(n—1) . .
() [V],, for (m X T)—matrlx fields:
n(n—1)
2

BV], €CZ(QR™™) for PeCQR™ ), (4.8)

10



i.e., the row-wise differentiation from (4.4), and again related by transposition also [[V]]Zn (.) for an
(@ X m) -matrix fields.

Surely, it follows from (3.25b):
curl,(Va) =0 for a € CZ°(Q, R), (4.9a)
or even
Curl,(Da) =0 for a € C°(Q,R™), (4.9b)
and from (3.25¢):

Curl,(Da)T = =2 Curl,(symDa) = 2 - Curl,(skew D a)
= [Decurl,a]” =2 [Da,(skewDa)]” for a € CZ°(Q,R™). (4.10)
And as analogue to the usual div o curl = 0 we have in n-dimensions:

3.15b n(n—
dv[V]E a"E”0  forae c(@QRMF). (4.11)

We recall the

Definition 4.1. Let Q C R™ be open. A linear homogeneous differential operator with constant coeffi-
cients A : C(Q,R™) — C2(Q,RY) is said to be elliptic if its symbol A(b) € Lin(R™,RY) is injective
for all b € R™\{0}.

It follows, from b x b = 0 for b € R? that the usual curl operator is not elliptic. Similarly, also

the generalized curl, is not elliptic. Since the kernel of <_ﬁ 2) : R — R? consists only of 0 for all

b1
<gl> € R2\{0} the operator HV]]ZQ is elliptic. To see that [V]}Z is not elliptic for all n > 3 we consider
2 n
BT [ B B2 —=B3 0 B3
B2 B2l =B 0O =B |-B2|=0 (4.12)
B3/ 1, \ P 0 B B 6]

which gives the non-ellipticity of [[V]]Z3 and the higher dimensional cases follow from the inductive struc-
ture.

4.1 Nye’s formulas

Denoting by Curl the matrix curl operator related to the usual curl for vector fields in R?, Room’s identity
(3.37a) reads

Curl(Anti(a)) = L(Da) and Da = L(Curl Anti(a)) for a € C°(Q, R?), (4.13a)

where Q(open) C R? for a moment. More precisely, they read

Curl(Anti(a)) = diva - I3 — (Da)” (4.13Db)
and
Dg = Gl ?n“(“)) Iy — (Curl Anti(a))” (4.13¢)
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and are better known as Nye’s formulas [18, eq.(7)]. Surely, (4.13a); is not surprising at all, but (4.13a)
implies that the entries of the derivative of a skew-symmetric matrix field are linear combinations of the
entries of the matrix curl:

DA = L(Curl A) for A € C°(Q,50(3)). (4.13d)
Returning to the higher dimensional case we conclude from (3.35) or (3.37b)
Da=L([a]} [V], ) forae C>(Q,R"), (4.14)
and from (3.37¢)
Da = L(Curly, [a], ) for a € CZ°(Q,R"),n > 3. (4.15)

Note, however, that the latter expression is (in general) not related to curl,a. Finally, from (3.37d) we
deduce

Da,(A) = L(Curl, A) for A e C°(Q,s0(n)). (4.16)
which implies (4.13d) in all dimensions n > 2:
DA = L(Curl, A) for A € C°(Q2,50(n)), (4.17)

a relation which is usually deduced using coordinates.

4.2 Incompatibility operator
Moreover, for P € C°(Q2, R™*™) we consider the generalized incompatibility operator given by:

inc, P ==V x, P x,, V=—[V], P[V]L (4.18)

(3:38) n(n—1) x n(n271)

~ [cun, ((Cun, P)T)}T c o0, R ) (4.19)

It has the properties known from the usual incompatibility operator in three dimensions, it follows namely
from (3.39¢)
syminc, P = inc,sym P and skewinc, P = inc, skew P (4.20)

and from (3.41) for a € C°(Q,R"):

inc, Da = inc,(D a)? = inc,(sym D a) = inc,(skew D a) = 0. (4.21)
n(n—1) _ n(n—1)
Furthermore, for matrix fields P € C°(Q,R™ 2 Sk ) we consider the new differential operation

[VI., B[Vl € CZ(Q.R™) (4.22)
with similar properties to the generalized incompatibility operator, see section 3.11. Especially for { €
C°(Q,R) we obtain:

IVI%, ¢ L 91, 2 AC- I, =DV, (4.23)
where we have used that from an algebraic point of view A = ||V||* behaves like a scalar and where D V¢

is the Hessian matrix of . The latter expression reminds of the known identity in n = 3 dimensions for
the usual incompatibility operator:

inc(¢-Is) = AC- I3 — D V(. (4.24)

It is clear from the integration by parts formula for the generalized curl (4.29b), that and how the
operator [[V]]Zn (.) [V], will play the counterpart in the corresponding integration by parts formula for
the generalized incompatibility operator. For the corresponding formula in the usual case we refer the
reader to [1].
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Remark 4.2. The usual incompatibility operator inc occurs, e.g., in the modeling of dislocated crystals
or in the modeling of elastic materials with dislocations, where the notion of incompatibility is at the
basis of a new paradigm to describe the inelastic effects, see e.g. [1, 10, 4, 16]. The coordinate-free view
presented above should provide a better understanding of such phenomena also in higher dimensions.

4.3 Vector Laplacian
Recalling (3.33) we have for all a,b € R™:

1% bxna=[0]% [, a2 1bl>-a—b- (b, a). (4.25)
Thus, interchanging b by V we deduce
Aa=Vdiva + [[V]]Zn curl,a  for a € C°(Q,R"),n > 2, (4.26)
which is the generalization of the known expression for the vector Laplacian in n = 3 dimensions:
Aa = Vdiva — curlcurla for a € C2°(Q,R3), (4.27)

and the appearance of the minus sign comes from the fact, that the associated matrix with the usual cross
product is a skew-symmetric matrix.
Since the matrix divergence and matrix curl act row-wise, we obtain

AP =DDivP + (Cul, P)[V], ~ for P e CX(Q,R™™), (4.28)

for m,n € N, n > 2, meaning that the entries of the Laplacian of a matrix field P are linear combinations of
the entries of the derivative of the matrix curl and of the entries of the derivative of the matrix divergence.

4.4 Integration by parts

For the sake of completeness we include the integration by parts formula for the generalized matrix curl:
Let © C R™ be an open and bounded set with Lipschitz boundary 92 and outward unit normal v. For

n(n—1)

alla € CY(Q,R") and all a € C*(Q,R™ 2z ) we have

/ (curl,a,a) + (a, [V]L a)dz = / (a %y (—v),a)dS, (4.29a)
Q o0

n(n—1)

so that for matrix fields P € C1(€2, R™*") and ¢ € C1(Q,R™* ) it follows

/(Curln Py + (P,’B[[V]]Xn>dx:/ (P (=), ) dS, (4.20D)
Q o0

and we refer the reader to [15] for a coordinate-free proof for square matrix fields P.

4.5 Helmholtz decomposition

It is well known, that any vector field a € C2°(R™,R™) admits a decomposition into a divergence-free
vector field and a gradient field, i.e., a curl,-free part, see e.g. [5] and for a deviation from the Hodge
decomposition see [9]. Let us denote the divergence-free part by agi;y and the curl,-free by acyn,, SO
having a = aqiv + acurl,,- At the end of our vector calculus we will provide the reader with the explicit
coordinate-free expressions of those parts, thus, providing the Helmholtz decomposition explicitly in all
dimensions n > 2. More precisely, we show that

Acurl, () = Vg G (z,y) - diva(y) dy (4.30a)
R
1 .
=— [ (@=y) (le—yll"" diva(y)) dy, (4.30D)
nwn, Jrn
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and

agiv(z) = [[Vz]]zn/ G™ (z,y) - curl,a(y) dy (4.30c)
R’ﬂ
1 —-n
= [ eyl (e~ ol - curbya(y) dy, (4.300)
n JR?

where G (z,y) denotes the normalized fundamental Green’s function for the Laplacian for the entire
space R™ and is given by

1
= nflz —yll, for n =2,

G (a,y) = {2 - .
w=nen le—ylI”", forn >3,

denoting by w, the volume of the unit ball in R"™, see [7, Section 2.4]. Indeed, the first expressions in
(4.30) follows from the decomposition (4.26) since for a € C2°(R™,R™) we have

a(z) = /n a(y) - A,GM (x,y)dy = A, o a(y) - Gm (z,y)dy

4.26 , n n
. div, [ aly) GO ) dy + 190, curlas [ aly) 6 ey dy

n

—V. [ (ay), V.G (2, y)) dy + [V.IE. / VoG (2, y) xn aly) dy
Rn Rn

—

*

=V, A <a(y),—VyG(”)(J:,y)>dy+ﬂvx]]zn/R a(y) xn V,G™ (2, y) dy

=

v, [ ¢,y -divaly)dy + [V.]L / G"(z,y) - curl,aly) dy,
R7 R

where in (%) we used that VG (z,y) = —V,G (z,y) and in (**) the relations
div(a-a) = (Va,a) + adiva and curly(a-a) = Va x, a+ « - curl,a, (4.32)

for a € C°(Q2) and a € C°(Q,R™). Since we have

1
VoG (rg) = —— o=yl " (e —y)  forn>2, (4:33)
we obtain
1 “n .
acurln(x) = (l’ - y) : (HSC - yH dlva(y)) dy7 (4343“)
nwn Rn
1 -n
dan(@) = = [ fo =l (o= ol curlya(w)) dy, (4.34D)
nwn, Jrn

and end up with Riesz potentials of order 1, see [20, Section V.1].

5 Conclusion

In the present paper we investigated in the algebraic structures underlying the generalized cross product
by associating it with an adequate matrix multiplication. The situation is different from the case of
the usual cross product where a matrix representation yields a skew-symmetric matrix. The absence of
symmetry in the general case causes to adjust the known algebraic identities in an adequate manner and
include also other combinations. In the vector calculus this returned not only the generalized curl, but
also a new operator [[V}]Zn The importance of the latter has been emphasized in the previous section and,
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especially, by the fact that the image of the [[V]]Zn operator lies in the kernel of the divergence operator,
see (4.11). Here, we have carefully investigated in the matrix analysis behind such operations. Such a
view already turned out to be very fruitful in extending Korn inequalities for incompatible tensor fields
to higher dimensions, cf. [15] where first thoughts in that matrix representations have been investigated.
With the better understanding presented here we are now in a position to further extend Korn-Maxwell-
Sobolev type inequalities which will be the subject of a forthcoming paper.
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