Monthly Archives: October 2019

Teaser picture for the next post.

After a lot of rainy days it was perfect weather today for the time of the year. It has been 3 weeks already since the last post and it is not that I have been doing nothing but the next post still isn’t finished. I told you that we would be looking at a parametrization that solves all 5 equations from the last post. So let me give you the parametrization in the teaser picture below. I also included the parametrization based on the modified Dirichlet kernels, by all standards the discovery of those modified kernels was one of the biggest discoveries in my study of higher dimensional number systems. To be precise: I found the first modified Dirichlet kernel years ago when I studied the 5D complex space.

In the last post I may have sounded a bit emotional but that is not the case. I am more or less one 100% through with the behavior of the so called math professors. They are incompetent to the bone and although that is not an emotional thing, it is that coward behavior that I do not like in those people. No, if it is highly overpaid, utterly incompetent and on top of that day in day out a coward, better show them the middle finger.

After having said that (I wasn’t expecting an invitation anyway) let’s look at the teaser picture because it is amazing stuff. I remember when I wrote down the parametrization for the very first time. At the time I did not know if the cosine thing would work because say for yourself: if you have a periodic function and you make two time lags of it, how likely is it they will form a flat circle in 3D space? But the cosine together with the two time lags does the trick because it is not hard to prove the parametrization lies in the plane with x + y + z = 1.

Ok, here is the cute parametrization for the 3D exponential circle:

The cosine & the modified Dirichlet kernel parametrizations

I think next week everything is ready so likely I can finally upload the next post. So thanks for your attention and till updates.

The sphere-cone equation in a matrix notation.

It is about time for a new post on 3D numbers, circular and complex. In this post I write the sphere-cone equation in a matrix notation so see the previous post on conjugates if you feel confused. The sphere-cone equation gives us two equations, as the name suggests these are a sphere and a cone and on the intersection we find the famous exponential circle.

Beside the sphere-cone equation I also demand that the determinant equals 1, now we have three equations and every intersection of those 3 equations has as it’s solution the exponential circle. Can it become more crazy? Yes because it is possible to factorize the third degree determinant into a linear and a quadratic factor. Those factors must also be 1 and now we have five equations! And since you can pick 10 pairs out of five, we now have 10 ways of solving for the intersection where the exponential circle lives…

It is strange that after all these years it is still easy to find 10 video’s where so called ‘professional math professors’ sing their praise upon the exponential circle in the complex plane. They really go beserk over the fact that e to the power it gives the cosine and sine thing. And after all those years still silent, yeah yeah those hero’s really deserve the title of honorable shithole… It is honorable because they often have relatively large salaries and they are shitholes because of their brave behavior when it comes to 3D complex numbers. Bah, I am getting a bad taste in my mouth when I think about the behavior of professional math professors. Let me stop writing about that low form of life.

This post is 8 pictures long. May be, I have not decided yet, is the next post about parametrizations of the exponential circle. In these 8 pictures I work out the case for the circular multiplication, that is the case where the imaginary unit j behaves like j^3 = 1. At the end I only give the 3D complex version of the matrix form of the sphere-cone equation and the rest you are supposed to do yourself.

Ok, again do not confuse this with quadratic forms. A matrix equation as written above has a real and two imaginary components while quadratic forms are often just real valued.

Let´s try to upload this stuff. See you in the next post.