Monthly Archives: August 2023

Intel is coming out with a 12 spin qubit thing for researchers to work upon. Will it work?

This stuff is supposed to work on 12 of those qubits also known as silicon qubits. Anyway these are loose electrons, so one electron per qubit. It is well known that if you have a computer, the thing must be possible to flip individual bits and on a quantum computer it must be possible to flip the spin of an electron if you want to use that as a qubit.
It is no secret that for a couple of years I think electrons are magnetic monopoles and the last time I have arrived at the conclusion that the magnetic charge of the electron is just as permanent as it’s electric charge.
In particular this means that it is just not possible to flip the spin of an individual electron and therefore this whole Intel 12 electron spin thing can never ever work properly. You cannot flip the spin of an individual electron and since their spin is permanent there is also not much possibility that you can bring any pair into entanglement or stuff like that.
A few posts ago I showed you some kind of rule for electron transitions in atomic or molecular orbitals; the only transitions allowed are those without spin flip. That is very interesting and one of the details that validate spin is a permanent monopole magnetic charge and not some kind of tiny magnet or a vector for that matter.
I made the next screenshot from an advertisement from Intel:

It’s nor very clear but the blue dots have arrows like they represent a vector…

So that stuff will never work as I am correct in my view on electron spin (not tiny magnets but magnetic monopoles). The fact that likely the magnetic charge is permanent has all kinds of far reaching consequences, for example in chemistry you now must often have the right kind of electron at the right time for a chemical reaction to occure or proceed. So it is not true that at the last moment the electron will flip it’s spin if that is needed in the chemical reaction (this despite the tiny tiny energy difference if spin flip would be possible), so if a particular electron just isn’t there the chemical reaction will stop or alter or whatever what.
Here is the advertisment video from Intel:

The whole Intel 12 spin qubit thing is explained a bit by some folks from NYU. Likely NYU will stand for New York University. For this kind of video they found in interesting format; you are looking at a group of people while one of them does the most of the talking. That is far less boing as looking at one person sitting in a room. Here is how it looks:

No you cannot control the electron, anyway not what spin concerns.

The interesting thing on the social side is that Intel will send one or more of these spin things to the Dutch unversity of Delft. Of course Delft is famous for discovering the Majorana particle, build a quantum computer on that thing that did never exist, collect 40 million or more US$ from Microsoft, had to withdraw the Majorana particle claim and so on and so on. If some weirdo’s (like in Delft) just do not want to listen to my long list of problems with electron spin, they are always allowed to make a bunch of fools of themselves one more time. A long long time ago Britney Spears sang “Baby hit me one more time” and that beautiful song they must sing once more over there at TU Delft. Here is the video:

Title: The mighty Intel is now making silicon Quantum chips. But are they actually any good?

That was it for this post, it is about time that I start writing an old fashioned math post instead of all these posts around a video. Well thanks for your attention and lets wait for the likely failure of the TU Delft on this small but important detail.

Action lab on magnetic oxygen and non-magnetic oxygen (video).

Molecular oxygen has the interesting property that it has a so called non-binding electron pair and it is know that in such a non-binding pair the electrons have the same spin. The way I view it for a couple of years is that the electrons are magnetic monopoles and that explains their behavior, so they don’t have a spin orientation so to say.
There is a relative simple experiment that I can’t do but if you have access to liquid oxygen and have some heavy electric magnets, you can do a simple experiment to see if the individual oxygen molecules behave like magnetic monopoles yes or no.
On Youtube there are plenty of videos showing the magnetic properties of oxygen by pouring the liquid stuff over a strong magnet or better: Pour it in between the two poles of two magnets.
After some time the oxygen will have separated over the two magnetic poles, if you can flip the magnetic polarity with the electric magnet, all oxygen should go loose and try to get to the other pole.
Once you have a setup like this or may be you have only strong permanent magnets, once the oxygen is separated you can try to put some of the liquid into a plastic bag. Let the oxygen become gas and see if the bag as a whole has magnetic monopole properties. That would be funny.

The only experiments I have done myself are those old ones with two televisions and try to that separation in the electron stream. It has to be remarked however that I once almost bought an old oscilloscope because you can let the electron beam go around so it becomes a circle on the glass tube. So that kind of experiment is still waiting…

Back to the oxygen molecule with it’s non-binding electron pair: Once I heard that I thought that likely oxygen must be in a lower energy state this way. May be that having an electron pair that pushes things apart give rise to a lower energy state. As far as I remember I never tried to look up the somehow more fine details.
So the video from the Action Lab came around for free and has all the information I needed. It has even information I was not waiting for like in the next screen shot:

But it’s forgiven, after all you can skip it if you want to.

In the next picture I grouped it a bit from four screen shots. And may I thank the folks from the chemical sciences for measuring all that energy stuff?
If the shapes below are correct, you see the molecule with the bonding pair becomes a linear shaped molecule that is clearly very different from triplet oxygen.

I forgot that part that says singlet oxygen can burn itself.

The video has the title Singlet Oxygen Is Scary! And yes there is something to say for a classification like that. Here is the video:

The reason as why I like this kind of stuff is that molecular orbitals make chopped meat of all that stuff that looks so sacred. Stuff like the Pauli exclusion principle, or the Aufbau principle and or the Hund rule for placing an extra electron. Stuff like that always assumes that all electrons are the same and it is just a matter of some magnetic vector pointing in this or that direction that solves the thing.
But I think electrons have a monopole magnetic charge that is permanent. So there are two kinds of electrons and that has all kinds of far reaching consequences. Well that is all for some other day.
In the meantime I am going to pop up a second beer, upload this post and after that I will ask the electrons in the beer the following question: Why do electrons never drink beer?
May be it is time to split. Goodbye.