Three physics experiments compared on 2 spin criteria.

In this post I want to look at three experiments from physics that all use a vertical magnetic field that is applied to unpaired electrons. The three experiments are:
1) The famous Stern-Gerlach experiment from 1922.
2) The Einstein-de Haas effect.
3) The muon g-2 experiment from Fermilab.

And the two criteria I use is also simple to understand:
1) Are there weird energy problems?
2) Is the electron spin alignment probabilistic yes or no?

You might think “Why should that have any importance at all?” Well the importance lies in the fact that all official explanations for the outcomes of the 3 above mentioned experiments, if you think about it, they all exclude each other.

For example the Stern-Gerlach experiment is often used to point at the probabilistic nature of measuring the direction of electron spin. And it is the 50/50 split in the beam of silver atoms that is the actual evidence of the fundamental probabilistic nature of measuring electron spin with a vertical magnetic field.
But in that Einstein-de Haas effect experiment, the results are always explained by all electrons doing the same and it is impossible to find the word “probabilistic” in such explanations. To focus the mind a little bit: If you would have a 50/50 probability in spin alignment with the applied vertical magnetic field, in that case there would be no Einstein-de Haas effect at all.
Now what is a weird energy problem? For me it is as simple as the so called anti-alignment of electron spins. It is kinda weird that half of the electrons would align their spins and as such lower their potential energy and the other half weirdly raises their potential energy?
Please remark this simplest form of a weird energy problem is a direct consequence of viewing electrons as bipolar magnets, if you skip that assumption and view electrons as magnetic monopoles you do not have this simplest of energy problems.
The post is four pictures long and I hope I won’t forget to place a few links to the three experiments although it is very simple to do that yourself.
So lets go.

Ok, that was it more or less. So the 3 experiments might be about electrons in some vertical magnetic field, the explanations vary widely. Let me close with a few links to the 3 experiments.

Link 1: A wiki about the Stern-Gerlach experiment:
Stern–Gerlach experiment. Link used: https://en.wikipedia.org/wiki/Stern%E2%80%93Gerlach_experiment

Halfway in the wiki they show the so called repeated SG experiments, the problem is that for 10 years now I can’t find anyone who did a successful repeated SG according to the stadard theory. But in the wiki the authors seem to think, just like a lot of physics professors, that such repeated experiments have been done. But if it had been done, that would validate the probabilistic nature of quantum mechanics when it comes to electron spin and as such the person(s) who did that experiment would have gotten a Nobel prize for that. As far as I know, there is no Nobel prize handed out for such a thing, anyway I never heard of it. So the next picture is total scientific crap as far as I know:

Link 2: The Einstein-de Haas effect. Again a standard wiki:

Einstein–de Haas effect Link used: https://en.wikipedia.org/wiki/Einstein%E2%80%93de_Haas_effect

In order to show the source of the quote in picture 03 of the main text above, here is the quote once more:
Therefore, in pure iron 96% of the magnetization is provided by the polarization of the electrons’ spins, while the remaining 4% is provided by the polarization of their orbital angular momenta.

That abundantly shows they think all electrons do the same.

Link 3: I did some arbitrary choice on the preprint archive about the last results of Fermilab with their g-2 experiment. My main problem with their explanation is of course that while using a vertical magnetic field, they claim the muon spin stays horizontal. So what happens to the good old torque that this vertical magnetic field does remains a mystery. And the pdf from the preprint archive is not that important but I want to show it to you so you can read it yourself and conclude that this all is left out and you get a bunch of hard to understand gibberish.

New results from the Muon g−2 Experiment
Link used: https://arxiv.org/pdf/2311.08282

And now you are at the end of this post about electron spin.