Category Archives: Exponential curves

New way of Fourier series using the 4D complex numbers.

Warning: This post contains stuff that is not correct! Yet I decided to post it anyway so you can see that crafting math is also just keep on working until you have it right. The reason it does not work in the post below is that the basis functions I use are not all perpendicular to each other. And if you want to reconstruct a function or a signal s(t) with the basis functions as mentioned below, you will get weird overlap and the end result will not be correct.

Ok, that was a bit frustrating. But all in all I don’t have much reputation damage because more or less instantly I found another way of crafting the 4D Fourier series and that seems to work perfectly. So compared to the professional math professors who at one point in time accepted the quaternions and together with that stupid theorem of Frobenius concluded that 3D or 4D complex numbers are not possible, at least I don’t look that retarded. Sometimes I can be stupid too but at least it does not last for over one century. And may be that is also the reason that professional math professors absolutely do not want to talk about my work on 3D & higher dimensional number systems; admitting that you have been stupid for over one century is of course not an easy thing to do. And given the fact I am now unemployed for 17 or 18 years, rather likely the professional professors would rather be eating dog shit compared to speaking out my name… Once more we observe that in this world there is never a shortage of idiots.

In this post I use the coordinate functions of the exponential curve in the 4D complex numbers but I changed the period to 2 pi instead of a period of 8 that comes along with taking the log of the first imaginary unit. I also would like to mention that I use the so called modified Dirichlet kernel and because that kernel originates from Fourier analysis you must not get confused by the name ‘Dirichlet kernel’. The modified kernel is important (anyway for me) because it spits out all those coordinate functions for making exponential circles and curves in all dimensions possible. While if memory serves, the use of the Dirichlet kernel inside Fourier analysis is for using it in proofs of convergence. But may be I remember that completely wrong, after all it was about 30 years ago that I studied the Fourier stuff for the last time. The last two weeks were pleasant from the mathematical point of view, all that old Fourier stuff that somewhere still lingers around in my brain. But so much is gone, what is that Gibbs overshoot? Is that when a male math professor has his yearly orgasm? And what was the Parcival identiy? I don’t have a clue whatsoever.
This post is 7 pictures long, four are of 550×775 pixels and I had to enlarge the other three to a size of 550×850 pixels. So it is not a mess like the previous post where I just enlarged the pictures on the fly until all that text was there. Here it is:

Again, this way of recontruction does not work!

Likely all those basis functions have this problem, if you take the inner product of an arbitrary basis function against the same basis function with three times the speed, it is not zero. And as such it is not perpendicular…

For people who have never heard of inner product spaces done with functions I found a cute pdf where a lot of the basics are explained.

Inner product spaces.

I would like to be the 4D Fourier stuff done in a correct manner in the next post but sifting through what I wrote on 4D complex numbers I realized I never wrote about a de Moivre identiy for the 4D exponential curve. May be I will publish that in a separate post, may be not.
Anyway, have a good time and see you in the next update.

Two parametrizations for 3D exponential circles.

It is about high time I post the solution in parametrization form of those five equations from 03 Oct 2019. That is almost 2 months back and oh how ashamed am I for my laziness… But for me math is a hobby, an important hobby but a hobby anyway. So other hobby’s are allowed to interfere with my little math hobby.

This post is 10 pictures long and at the end there is a horrible bad video from the Youtube channel Seeker. Begin this week I crossed that video with an intriguing title; Could These Numbers Unravel New Dimensions in Space? I was just curious but it is that Cohl Furey stuff again. It is an attempt to explain particle physics via complex number, quaternions and octonions… What do they have in common? These number systems are always fields that means all non-zero numbers have an inverse. Why the professional math professors find that so important is unknown to me, it is more like they have nothing else in the toolbox. If you are interested you can find the Cohl Furey video’s on Youtube.

In this post I too write about things that are common in the complex plane, complex and circular 3D numbers and 4D complex numbers. You can use the modified Dirichlet kernels as the building blocks for all possible exponential circles or in the case with 4D complex numbers: the exponential curve (in 4D space the curve is in a 3D hyper plane).

But I also wanted to show you the original cosine solution that I found years ago. To this day it is still amazing that the cosine can pull it off; that the cosine can be a building block for a 3D exponential circle. Next year it will be three decades ago when I found the 3D complex numbers and got interested in them. At present day you can wonder why there is never a healthy response from the math communuty. It is all very logical: if there is no healthy response that means the math community in itself cannot be healthy. It is just a community of perfumed princes and that’s it.

After so much blah blah it is high time to go to the ten pictures:

So from the complex plane in two dimensions to 4D complex space; a binding element is how you can use the modified Dirichlet kernels and their time lags to construct these very interesting parametrizations. Of course there is much more that binds those spaces together; the matrix representations are all very similar, just like the eigen values and eigen vectors. But above 2D it is never a field. And again why the professional math professors have this weird fixation on fields is completely unknown to me.
At last, here is that wonderful video that will make your toes curl

End of this post and thanks for your attention!

Part 19: Four integrals defining the 4D complex number tau.

It is a bit late but a happy new year anyway! In this post we will do a classic from the complex plane: calculation of the log of the first imaginary unit.

On the complex plane this is log i and on the complex 4D space this is log l .

Because this number is so important I have given it a separate name a long long time ago: These are the numbers tau in the diverse dimensions. In the complex plane it has no special name and it simply is i times pi/2.

On the real line it is pretty standard to define the log functions as the integral of the inverse 1/x. After all the derivative of log x on the real line is 1/x and as such you simply define the log to be the integral of the derivative…

On the complex plane you can do the same but depending of how your path goes around zero you can get different answers. Also in the complex plane (and other higher dimensional number systems) the log is ‘multi valued’. That is a reflection of the fact we can find exponential periodic functions also known as the exponential circles and curves.

The integrals in this part number 19 on the basics of 4D complex numbers are very hard to crack. I know of no way to find primitives and to crack them that way. May be that is possible, may be it is not, I just do not know. But because I developed the method of matrix diagonals for finding expressions for the value of those difficult looking integrals, more or less in an implicit manner we give the right valuations to those four integrals.

With the word ‘implicit’ I simply mean we skip the whole thing of caculating the number tau via matrix diagonalization. We only calculate what those integrals actually are in terms of a half circle with coordinates cos t and sin t.

This post is 8 pictures long in the usual size of 550 by 775 pixels (I had to enlarge the latest picture a little bit). I hope it is not loaded with typo’s any more and you have a more or less clean mathematical experience:

End of this post.

Calculation of the 4D number tau diagonal matrix style.

In the begin of this series on basic and elementary calculations you can do with 4D complex numbers we already found what the number tau is. We used stuff like the pull back map… But you can do it also with the method from the previous post about how to find the matrix representation for any 4D complex number Z given the eigenvalues.

Finding the correct eigenvalues for tau is rather subtle, you must respect the behavior of the logarithm function in higher dimensions. It is not as easy as on the real line where you simply have log ab = log a + log b for positive reals a and b.

But let me keep this post short and stop all the blah blah.

Just two nice pictures is all to do the calculation of the 4D complex number tau:

 

(Oops, two days later I repaired a silly typo where I did forget one minus sign. It was just a dumb typo that likely did not lead to much confusion. So I will not take it in the ‘Corrections’ categorie on this website that I use for more or less more significant repairs…)

Ok, that was it.

Diagonal matrices for all 4D complex numbers.

This website is now about 3 years old, the first post was on 14 Nov 2015 and today I hang in with post number 100. That is a nice round number and this post is part 15 in the series known as the Basics for 4D complex numbers.

We are going to diagonalize all those matrix representations M(Z) we have for all 4D complex numbers Z. As a reader you are supposed to know what diagonalization of a matrix actually is, that is in most linear algebra courses so it is widely spread knowledge in the population.

Now at the end of this nine pictures long post you can find how you can calculate the matrix representation for M(l) where l is the first imaginary unit in the 4D complex number system. And I understand that people will ask full of bewilderment, why do this in such a difficult way? That is a good question, but look a bit of the first parts where I gave some examples about how to calculate the number tau that was defined as log l. And one way of doing that was using the pull back map but with matrix diagonalization you have a general method that works in all dimensions.

Beside that this is an all inclusive approach when it comes to the dimension, in practice you can rely on internet applets that use commonly known linear algebra. Now if you are a computer programmer you can automate the process of diagonalization of a matrix. I am very bad in writing computer programs, but if you can write code in an environment where you can do symbolic calculus in your code, it would be handy if that is on such a level you can use the so called roots of unity from the complex plane. After all the eigenvalues you encounter in the 4D complex number system are always based on these roots of unity and the eigenvectors are too…

This post number 100 is 9 pictures long, as usual picture size is 550 x 775 pixels.
In the next post number 101 we will use this method to calculate the matrix representation of the number tau (that is the log of the first imaginary unit l).

Ok, here are the pictures:

That´s it, in the next post we go further with the number tau and from the eigenvalues of tau calculate the matrix representation. So see you around.

Part 14: The Cauchy integral representation for the 4D complex numbers.

It took me longer than expected to craft this update. That is also the nature of the subject; you can view and do math with Cauchy integral representation in many ways. In the end I settled on doing it just for polynomials of finite degree and even more simple: these polynomials are real valued on the real line. (So they have only real coefficients and after that are extended to the space of 4D complex numbers).

In another development, last week we had the yearly circus of Noble prizes and definitely the most cute thing ever was those evolving protein molecules. Because if you can use stuff like the e-coli bacteria you can indeed try if you can (forcefully) evolve the proteins they make… That was like WOW. Later I observed an interview with that chemistry Nobel prize winner and she stated that when she began she was told ‘gentlemen don’t do this kind of thing’.

So she neglected that ‘gentlemen stuff’ and just went on with it. That is a wise thing because if you only do what all those middle age men tell you to do you will find yourself in the very same hole as they are in…
The physics prize was also interesting, for myself speaking I was glad we did not observe those physics men totally not understanding electron spin but with the usual flair of total arrogance keep on talking about spin up and spin down.

You can also turn that spin nonsense upside down: If elementary particles only carry monopole electrical charge than why should electrons be bipolar when it comes to magnetism? That Gauss law of magnetism is only a thing for macroscopic things, there is no experimental proof it holds for quantum particles…

But let’s talk math because this update is not about what I think of electron spin. This is the second Cauchy integral representation I crafted in my life. Now the last years I produced a whole lot of math, my main file is now about 600 pages long. But only that very first Cauchy integral representation is something that I printed out on a beautiful glossy paper of size A0. That first Cauchy integral representation was on the space of 3D numbers and there life is hard: The number tau has determinant zero and as such it is not invertible. But I was able to complexify the 3D circular numbers and it was stunning to understand the number tau in that complexification of the 3D circular numbers. Just stunning…

Therefore I took so much time in trying to find an easy class of functions on the space of 4D complex numbers. I settled for easy to understand polynomials, after all any polynomial gives the same value everywhere if you write them as a Taylor series.
Since this property of polynomials is widely spread I can safely say this in this part 14 of the basics to the 4D complex numbers we have the next Theorem:
THEOREM: The math will do the talking.
PROOF: Just read the next 12 pictures. QED.

As usual all pictures are 550 x 775 pixels in size. I also use a thing I name ‘the heart of the Cauchy integral’, that is not a widely known thing so take your time so that the mathematical parts of your brain can digest it…

I truly hope the math in this update was shallow enough so you can use it in your own path of the math that you like to explore.

End of this post, may be in Part 15 we will finally do a bit more about the diagonalization of 4D complex numbers because that is also a universal way of finding those numbers tau in the different dimensions like the 17D circular numbers & all those other spaces.

Have a nice life or try to get one.

A few numerical results related to the 4D sphere-cone equations using the four coordinate functions of the 4D exponential curve.

This is Part 9 in the basics to the complex 4D numbers. In this post we will check numerically that the 4D exponential curve has it’s values on the 4D unit sphere intersected with a 4D cone that includes all coordinate axes. In 3D space the sphere-cone equations ensure the solution is 1 dimensional like a curve should be. In 4D space the sphere-cone equations are not enough, there is at least one missing equation and those missing equations can be found in the determinant of a matrix representation M(Z) for a 4D complex number Z.

But we haven’t done any determinant stuff yet (because you also need a factorization of the 4D determinant in four variables and that is not a trivial task). So this post does not contain numerical evidence that the determinant is always one on the entire exponential curve.

If you want to compare this post to the same stuff in the complex plane:
In the complex plane the sphere-cone equation is given by x^2 + y^1 = 1 (that is the unit circle) and if you read this you probably know that f(t) = e^{it} = cos t + i sin t.

You can numerically check this by adding the squares of the sine and cosine for all t in one period and that is all we do in this post. Only it is in 4D space and not in the two dimensional complex plane…

This post is seven pictures long (all of the usual size 550 x 775).

All graphs in this post are made with the applets as found on:

WIMS https://wims.sesamath.net/wims.cgi?lang=en

For the two graphs from above look for ‘animated drawing’ choose the 2D explicit curves option. There you must use the variable x instead of time t.

Here is the stuff you can place in for the sphere equation:

(cos(pi*x/2)*cos(pi*x/4))^2 +
(0.707107*(cos(pi*x/4)*sin(pi*x/2) + sin(pi*x/4)*sin(pi*x/2)))^2 +
(-cos(pi*x/2)*sin(pi*x/4))^2 +
(0.707107*(cos(pi*x/4)*sin(pi*x/2) – sin(pi*x/4)*sin(pi*x/2)))^2

If you just ‘cut & paste’ it should work fine…
That should save you some typo’s along the way

Ok, that is what I had to say on this numerical detail.

Calculation of the four coordinate functions for the 4D exponential curve (complex version).

Like promised in this post I will show you in the greatest detail possible how to find those rather difficult looking four coordinate functions.

I had thought about crafting these four coordinate functions before but the method I had in mind was rather labor some so I balked a bit at that. Not that I am lazy but I also had to work on the basics for the 4D complex numbers like in the last posts…

So one day I decided to look into the specific details of what I name ‘imitators of the number i’ and I was very surprised by their behavior. As a matter of fact these imitators imitate i soo good that you can make exponential circles of them.
And I wrote down the two exponential circles, I looked at them and realized you can factorize the 4D exponential curve with it and as such you will get the four coordinate functions…

That was all, at some point in time on some day I just decided to look at the imitators of the number i from the complex plane and within 5 at most 10 minutes I found a perfect way of calculating these four coordinate functions.

It always amazes me that often a particular calculation takes a short amount of time, like 10 or 20 minutes, and after that you always need hours and hours until you have a nice set of pictures explaining the calculation…

Anyway, this post is five pictures long and as such it contains also Part 6 and 7 of the Basics to the 4D complex numbers.

I hope that in the long run it will be the result in this post that will make 4D complex numbers acceptable to the main stream mathematical community.
But may be once more I am only fooling myself with that, after all back in the year 1991 I was only thinking stuff like ‘If you show them the 3D Cauchy-Riemann equations, they will jump in the air from joy’.
They (the math professors) never jumped from joy, no significant change in brain activity was ever observed by me. So when I write ‘in the long run’ as above, may be I should more think like a geological timescale…
__________

But let’s not complain because once you understand the factorization, it is so beautiful that it is hard to feel angry or whatever what.
Here are the five pictures:

 

Ok, that is how you calculate the four coordinate functions.

Till updates.

The basics of 4D complex numbers.

In the previous post on 4D complex numbers I went a little bit philosophical with asking if these form of crafting a 4D number system is not some advanced way of fooling yourself because your new 4D thing is just a complex plane in disguise…

And I said let’s first craft the Cauchy-Riemann equations for the 4D complex numbers, that might bring a little bit more courage and making us a little bit less hesitant against accepting the 4D complex numbers.

In this post we also do the CR equations and indeed they say that for functions like f(Z) = Z^2 you can find a derivative f'(Z) = 2Z. So from the viewpoint of differentiation and integration we are in a far better spot compared to the four dimensional quaternions from Hamilton. But the fact that the CR equations can be crafted is because the 4D complex numbers commute, that is XY = YX. And on the quaternions you cannot differentiate properly because they do not commute.

So crafting Cauchy-Riemann equations can be done, but it does not solve the problem of may be you are fooling yourself in a complicated manner. Therefore I also included the four coordinate functions of the exponential 4D curve that we looked at in the previous post.

All math loving folks are invited to find the four coordinate functions for themselves, in the next post we will go through all details. And once you understand the details that say the 4D exponential curve is just a product of two exponential circles as found inside our 4D complex numbers, that will convince you much much more about the existence of our freshly unearthed 4D complex numbers.

Of course the mathematical community will do once more in what they are best: ignore all things Reinko Venema related, look the other way, ask for more funding and so on and so on. In my life and life experiences not one university person has ever made a positive difference, all those people are only occupied with how important they are and that’s it. Being mathematical creative is not very high on the list of priorities over there, only conform to a relatively low standard of ‘common talk’ is acceptable behavior…

After having said that, this post is partitioned into five parts and is 10 pictures long. It is relatively basic and in case that for example you have never looked at matrix representations of complex numbers of any dimension, please give it a good thought.

Because in my file I also encountered a few of those professional math professors that were rather surprised by just how a 3 by 3 matrix looks for 3D complex numbers. How can you find that they asked, but it is fucking elementary linear algebra and sometimes I think these people do not understand what is in their own curriculum…

Ok, here are the 10 pictures covering the basic details of 4D complex numbers:

 

 

 

 

 

 

 

 

Ok, that was the math for this post.

And may be I am coming a bit too hard on the professional math professors. After all they must give lectures, they must attend meetings where all kinds of important stuff has to be discussed until everybody is exhausted, they must be available for students with the questions and problems they have, they must do this and must do that.

At the end of the day, or at the end of the working week, how much hours could they do in free thinking? Not that much I just guess…

Let’s leave it with that, see you in the next post.

A nice teaser picture about 4D coordinate functions of the 4D exponential curve (complex version).

Lately I have been working on the next post about the basics of the 4D complex numbers. You simply need those basics like matrix representations because later on when you throw in some 4D Cauchy-Riemann equations, it is very handy to have a good matrix representation for the stuff involved.

The next post covering the basics had five parts, let’s not dive in all kinds of math details right now but go straight to part five with the four coordinate functions of the 4D exponential curve:

These four coordinate functions are also time lags of each other.

This new baby number tau keeps on looking cute…

Let me leave it with that, till updates.