Category Archives: Uncategorized

On the Frisch-Segrè experiment (a repeated SG experiment) from 1933.

Last week I finally found out after seven years that there is indeed at least one repeated Stern-Gerlach experiment. It is well known in quantum mechanics that the Pauli matrices can be used to calculate the probabilities for finding electrons into a particular spin state. And in a repeated SG-experiment, if you turn the magnetic field 90 degrees the Pauli stuff says it is 50/50 divided. If you example you first applied a vertical magnetic field and after that some horizontal magnetic field, you should get 50% of the electrons having spin left and 50% spin right.

But if you try to do a search on a term like “Experimental proof for the Pauli matrices” or just “Repeated Stern-Gerlach experiment” never ever serious popped up in the last seven years.

Seven years ago I arrived at the conclusion that it is impossible that electrons are “tiny magnets” or for that matter have a bipolar magnetic field. A lot of things can be explained much better and more logical compared to mystifications like the Pauli exclusion principle. If electrons are magnetic monopoles, in that case it is logical that if they form pairs they must have opposite magnetic charges.
And with the electron pair we already have a detail where the ususal model of electrons as “tiny magnets” fails; two macroscopic magnets are attracking only if their magnetic fields are aligned. If two macro magnets are anti-aligned, they repel. So how the hell is it possible that two electrons only form a pair if they have opposite spins, only if they anti-align?
What I still don’t understand is why people like Pauli, Einstein, Feynman etc etc never remarked that it is nonsense to suppose that electrons are tiny magnets. Remark there is zero experimental proof for the assumption that electrons are tiny magnets. They just projected the Gauss law for magnetism on electrons without ever remarking you must have some fucking experimental proof.
In the next picture you can see the experimental setup; you see two Stern-Gerlach experiments and in the middle is a inner rotation chamber where they try to flip the spin of the electrons.

Einstein proposed the use of the hot wire…

So Einstein must have given it a thought, this SG-experiment and never realized the impossibility of the Gauss law for magnetism for electrons.

Last week I found a nice pdf upon the Frisch-Segrè experiment and I would like to quote a few hilarious things from it:

“The physical mechanism responsible for the alignment of the silver atoms remained and remains a mystery” and quoting Feynman, “… instead of trying to give you a theoretical explanation, we will just say that you are stuck with the result of this experiment … ”

This is also the first time that I see this ‘problem’ actually stated; how is it possible that a tiny thing like an electron anti-aligns it’s spin with the applied external magnetic field? That is very very strange, for example water molecules are tiny electric dipoles and if they meet an electric field the only thing they want to do is to align themselves with that electric field. Why do electrons gain potential energy in a magnetic field?

To understand how crazy this is: If you go outside and throw away a bunch of rocks, do half of those fall to earth and the other half flies into space? Nope, in the end all rocks try to get at the state of minimal potential energy.

But if you view electrons as magnetic monopoles this weird detail of climbing in potential energy is’n there any longer: an electron with say a north pole magnetic charge will always go from the north pole to the south pole of a macroscopic magnetic field. And vice versa for an electron with a south pole magnetic charge. The weird energy problem isn’t there any longer.
You can compare that to a bunch of electrons and protons entering an electric field; they feel opposite forces and that is how they both lower their potential energy.

At last let me give you the pdf. This pdf is not very useful because it is written by one of those weirdo’s that keep on believing that electrons are tiny magnets…

Once more I want to remark that if you see a physics professor doing his or her blah blah blah thing on electron spin, they just don’t have any serious experimental proof that electrons actually have two magnetic poles.
Furthermore, none of them has a problem with that.
So why are we funding these weirdo’s with tax payer money?

Ok, that was it for this post. Thanks for your attention.

3 Video’s to kill the time & Unzicker’s horror on the quaternions…

To be honest I like the Unzicker guy; he is from Germany I believe and he alsways attacks the standard model for particles. According to him there are zillions of problems with the standard model and likely he is right with that. But he fully buys the crap that electrons must be magnetic dipoles without any experimental confirmation at all.
So that I post a video of him talking weird stuff about electrons is not a way to rediculize him. On the contrary, because he always tries to attack the idea’s inside the stadard model he in itself is a perfect example as why the physics community swallows all those weird explanations upon electron spin.

For myself speaking I think that electrons don’t have their spins ‘up’ or ‘down’. I don’t think that they are tiny magnets with two magnetic poles but in itself they are magnetic monopoles that come with only one magnetic charge… My estimate is that this magnetic charge is a permanent charge, that means there is no such thing as spin flip of an individual electron.

In the Unzicker video Alexander asks for help about differentiation on the quaternions or so. Well have I done my utmost best to craft all kinds of spaces where you can integate and differentiate, stuff like 3D complex numbers, 4D complex numbers etc, comes a weirdo along asking about the quaternions… On quaternions differentiating is a true horror and that is caused by the property that in general the quaternions don’t commute. I wrote a one picture long explanation for that. The problem is that differentiation on say the square function on the quaternions destroys information. That is why there is no so called ‘Complex analysis on the quaternions’, it just doesn’t exist.
Ok, lets go to the first video. It is not that very good because he constantly throws in a lot of terms like SO2 and SO3, but for an audience like physics people that is allowed of course.

Because it is still the year 2022, it is still one hundred years back that the Stern-Gerlach experiment was done. The next short video is relatively good in it’s kind; there are a lot of videos’s out there about the SG experiment and most are worse. In this video from some German at least there are some more explanation like it is not the Lorentz force because these are silver atoms. But as always in all explanations out there it misses as why exactly electrons do anti-align themselves with the applied external magnetic field.
For example water molecules are a tiny electric dipole, if you apply an electric field to clean water, all these tiny electric dipoles for 100% align with the electric field. So why do electrons not do that?

As always: electrons being magnetic monopoles is a far better explanation for what we observe. But all these physics people, one hundred percent of them have no problem at all when there is no experimental evidence that electrons are indeed ‘tiny magnets’. That is what I still don’t understand: Why don’t they see that their official explanations are not very logical when you start thinking on these explanations? Why this weird behavior?

Ok, lets hang in why differentiation on the quaternions is a total horror.

Hasta la vista baby!

The last video is a short interview with John Wheeler where he explains the concept of positrons being electrons that travel back in time. At some point John talks about an electron and positron meeting and anihilate each other. Well it has to be remarked that this doesn’t always happen. They can scatter too and why could that be? Well it fits with my simple model as electrons being magnetic monopoles. Positrons and electrons only kill each other if they have also the opposite magnetic charge…

Ok, that was it for this post. Thanks for your attention.

An old unsolved problem regarding the exponential function f(x) = e^x.

This is a problem I found about thirty years ago and I was never ever able to solve it. The problem as I formulate it is about finding a so called ‘composition root’ to the exponential function. Just keep it simple, say the composition ‘square root’. If we denote that as r(x) what I mean is that this function if composed with itself gives the good old exponential function: r(r(x) = f(x) = e^x.
There are many interesting aspects to this problem. For example take a piece of paper and a pencil and draw the graph of the exponential function and the identity function. It is now very easy for every point on your graph of the exponential function to find the graph of the double composition f(f(x) = e^(e^x)). But, as far as I know, you cannot go back and given the function f(x) find it’s composition root r(x).
It is very well possible that this problem is solved in the theory of dynamical systems. If memory serves we once had a lesson in when a family of functions could be interpolated but that was 30 years back and what I want is explicit expressions and formula’s and not only a vague existencial proof without a way to find an explicit answer.

Back in time before the logarithm was invented, the people of those long lost centuries had a similar problem understanding what exponential behaviour was. And you can go a long way in understanding exponential behaviour but say for yourself; without knowledge of the logarithm that kind of knowledge is far from being optimized.

In this post I only talk about the composition square root but of course any n-th root should be possible and as such giving rise to the idea that you can iterate or compose the exponential function also a real number amount of times. I have to admit I also have no proofs for the solution to this all being unique, but you should be able to differentiate all stuff found and it should still be coherent so my gut feeling says the solution is unique. My guess is there is only one ‘composition square root’ r(x) that is as smooth as f(x) itself…

This post is only two pictures long so here we go:

And it is also the end of this post. Give it a thought and if you are able to make some inroads on this that would be great. But all in all I think we do not have the math tools to crack this old old problem.

See you around in the next post.

Two videos so bad they are actually funny & a PERFECT gif found.

If you start commenting on bad videos you will have a busy hobby for the rest of your life. But there are also reasons to take a look at these videos, for example the math video is horrible but the path of calculation shown is rather beautiful. The other video is about magnetism and when I viewed it for the first time it was really late at night and only after a good night sleep I realized how horribly bad that video was.
But it was the magnetism video that made me look up the average size of the so called magnetic domains and that was when I found that PERFECT gif. So I cannot say it was all a waste of time, that perfect gif is made with something that is named a Kerr microscope and with such a device you can make magnetic domains visible.
Years ago, if memory serves it was Feb 2017, I was studying so called ‘racetrack memory’ that was under development by IBM. That IBM project failed because they kept on hanging to electrons being ‘tiny magnets’ with two magnetic poles, because that is likely not true all their work failed. Anyway they came up with the fact that you cannot move magnetic domains with magnetic fields and I totally freaked out. Late at night I realized that within my broader development of understanding magnetism at the electron level, the IBM findings were logical if magnetic domains in say Iron or so, always have a surplus of either north pole monopole electrons or south pole monopole electrons. Domain walls separate the two kinds of magnetic domains. Itis a pity that about five years back I never heard of those Kerr microscopes.
Again I want to highlight that I do not want to convince anybody that electrons are the long sought magnetic monopoles. I have done that for six or seven years and it was only in this year 2021 that I arrived at the conclusion that physics professors are just as stupid as the average math professor. It is a pile of garbage so it is not much of a miracle that six or seven years of trying to apply logic did not work at all. So from this year on going into the future the physics professors have the same status as the math professors: A pile of rotten garbage that you must avoid at all times at all costs needed.

After having said that, this post is five pictures long where I comment on the two horrible videos. Below that I will post the two videos so you can see for yourself (or may be you want to see them first). And at the end you can see that perfect gif where magnetic domains change in size due to the application of an external magnetic field. Also back in 2017 I more or less figured out how magnetic domains will change if you approach a piece of iron with a permanent magnet. What you see in the gif is more or less precisely that: Some domains grow while domains next to that shrink.

Ok, here we go:

Now we can go to the first video, the math one:

I found the magnetics video by doing an internet seach on ‘The Stern-Gerlach experiment for iron’. It is disappointing that almost no significant results are there. Some of stuff out of the 2030-ties of the last century but that was all behind pay walls. Very high in the rankings came the next video that uses iron filings to mimic or imitate the Stern-Gerlach experiment. The video guy should have used magnets on only one side, if that resulted into attraction & repulsion of the iron filings he would have gotten a standing ovation from me. Without any insult; the way he executed this experiment is a true disaster only showing he does not understand why the SG experiment is so important.
And by the way: If my idea of electrons being magnetic monopoles is in fact correct, you do not have to use inhomogeneous magnetic fields. Everything will do; even the most constant magnetic field in space and in time will do. But again after so many years of talking to deaf ears from stupid physics people, I have lost my desire to convince anybody any longer..

With magnets on two sides; of course it will spread out! This is stupid!!!!!

Ok, I have never hung any animated gif into this WordPress website so let’s check it out if it works properly:

As you see: Some domains grow while adjecent ones shrink.

I found this animated gif in a wiki: Magnetic domain.
That was it for this post. Thanks for your attention.

Counter examples to the last theorem of Fermat using the number 210.

Ok ok one more post upon the easy to find counter examples to the last theorem of Fermat. In this post we will take a look at the real integers modulo 15 and modulo 210. It still amazes me how easy it is to find counter examples to the last Fermat theorem using the integers modulo n where n has at least two prime factors. From my own education I remember that the integers modulo n are studied in math mostly via additive groups and multiplicative groups. For some strange reason it is not commonly studied via rings where you have the benefit of addition and multiplication inside one simple to understand structure of numbers… Inside professional math there is always that tendency to study fields only, of course there a legitimate reasons for that like it makes math life often more simple. But rings are not fields, rings allow for non zero numbers that are non-invertible anyway. As such you can always find plenty of pairs of so called ‘divisors of zero’ and once you have stuff like that it is always a piece of cake to find counter examples to the last theorem of Fermat.

Yet I tried a few times to find some counter examples on the internet but all I got was boatload after boatload of total nonsense like the weird stuff paraded in the previous post. Could it be that math professors tried to find counter examples to the last theorem of Fermat while they never dipped into the power of the divisors of zero? That’s crazy because the Fermat theorem was open for about 350 years. I think many people have found the easy to understand results in this post before I did but if they tried to get the stuff out they were blocked by the scientists of those days and as such in the year 2021 it is hard to find something back.

Compare it to electron spin; it is hard to swallow that I am the very first person in history that claims electrons cannot be magnetic dipoles because it is just not logical for hundreds of reasons. Yet in the daily practice of how science is done at the universities, it is a no show that electrons are magnetic monopoles. What happened to all those other persons that understood that electrons cannot be magnetic dipoles? Well at least they got neglected and university life just went on with electrons being a magnetic dipole because ‘we are so smart’ and ‘the standard model explains almost everything’. And more of that nonsense…

This post is 8 pictures long, all of the usual size of 550X775 pixels.
Since it is about counter examples to the last Fermat theorem I expect it will not make much headlines in the news for another 3500 years.
After all the only thing university people are good at is being incompetent…;)
Here we go:

At last I found a more or less readable article about near misses of the last Fermat theorem. It was found inside old work from Ramanujan so that is always interesting. Most of the time when I looked for counter example to the last Fermat theorem I only find piles of garbage but this time I tried it with Duckduckgo and something readable comes floating up:
Ramanujan surprises again.
https://plus.maths.org/content/ramanujan

Ok that was it for this post. Thanks for your attention.

Why can’t I find counter examples to Fermat’s last theorem on the internet?

After a few weeks it is finally dawning on me that it might very well be possible that the professional math people just do not have a clue about how easy it is to find counter examples to the FLT. (FLT = Fermat’s Last Theorem.) That is hard to digest because it is so utterly simple to do and understand on those rings of integers modulo n.
But I did not search long and deep and I skipped places like the preprint archive and only used a bit of the Google thing. And if you use the Google thing of course you get more results from extravert people. That skews the results of course because for extraverts talking is much more important compared to the content of what you are talking or communicating. That is the problem with extraverts; they might be highly social but they pay a severe price for that: their thinking will always be shallow and never some stuff deeply thought through…

As far as I know rings of the integers modulo n are not studied very much. Of course the additive groups modulo n are studied and the multiplicative groups modulo n are studied but when it comes to rings all of a sudden it is silent always everywhere. And now I am looking at it myself I am surprised how much similarity there is between those kind of rings and the 3D complex & circular numbers. Of course they are very different objects of study but you can all chop them in two parts: The numbers that are invertible versus the set of non-invertibles. For example in the ring of integers modulo 15 the prime factors of 15 are 3 and 5. And those prime factors are the non-invertibles inside this ring. This has all kinds of interesting math results, for example take the (exponential) orbit of 3. That is the sequence of powers of 3 like in: 3, 3^2 = 9, 3^3 = 27 = 12 (mod 15), 3^4 = 36 = 6 (mod 15) and 3^5 = 18 = 3. As you see this orbit avoids the number 1 because if it would pass through 1 you would have found an inverse of 3 inside our ring and that is not possible because 3 is a non invertible number…

Likely my next post will be about such stuff, I am still a bit hesitant about it because it is all so utterly simple but you must never underestimate how dumb the overpaid math professors can be: Just neglecting rings modulo n could very well be a common thing over there while in the meantime they try to act as a high IQ person by stating ‘We are doing the Langlands program’ & and more of that advanced blah blah blah.
Anyway it is getting late at night so from all that nonsense weird stuff you can find on Google by searching for counter examples to the last theorem of Fermat I crafted 3 pictures. Here is the first one:

I found this retarded question on quora. For me it is hard to process what the person asking this question was actually thinking. Why would the 2.999…. be important? What is this person thinking? Does he have integer solutions to say 2.9 and 2.99 and is this person wondering what would happen if you apply those integer solutions to 2.99999999…..???????

It is retarded, or shallow, on all levels possible. So to honor the math skills of the average human let’s make a new picture of this nonsense:

We will never be intimidated by the stupidity of such questions and simply observe these are our fellow human beings. And if ok, if you are a human being running into tons of problems, in the end you can always wonder ‘Am I a problem myself because I am so stupid?’

If you have figured out that question, you are getting more solid & you look more like a little cube:

I want to end this post on a positive note: Once you understand how stupid humans are you must not view that as a negative. On the contrary, that shows there is room for improvement.

The last Fermat theorem (positive version) versus the number 1.

This is a short post; just over 3 pictures long. We make a few calculation on the ring of integers modulo 35. Of course that is a ring and not a field because 35 has two prime factors namely p = 5 and q = 7. These two prime factors form so called divisors of zero, that means that pq = 35 = 0 inside the ring of integers modulo 35.
Because the two prime factors have this property, that has all kinds of simplications when it comes to expanding (p + q)^n inside this ring. That is what I name the ‘positive version’ of the last theorem of Fermat: The ring of integers modulo 35 is a simple number space where the last theorem of Fermat is possible, here we again have 12^n = (5 + 7)^n = 5^n + 7^n.

In this post I use the fact that the prime numbers 5 and 7 are also relatively prime and as such you can make a linear combination of them to get the number 1. And once you have the number 1 you can use them as a basis for the entire ring of integers modulo 35. But if you have a healthy brain, likely you will remark that it is far more easy to just use the counting numbers 1, …, 35 or just 1 to craft such a basis… So I understand that you might think I am crazy to the bone. Of course I am crazy to the bone but there is a goal in this utter madness. Take for example 3*5 – 2*7 = 1, this is one possibility to form the number 1 as a linear combination of 5 and 7. Since both terms contain one of the pairs of divisors of zero as a factor, this linear combination allows for a positive last theorem of Fermat decomposition: For a natural numbers n we have that: (15 – 14)^n = 15^n + (-1)^n*14^n = 1.
Although such expressions are very cute looking, it has no significant math depth anyway. All in all this post it totally unimportant because it is all so simple. The post upon the 3D Gaussian integers is far more important because there it was possible to write the number 3 as a linear combination of two 3D Gaussian integers. As such for the first time in about 350 years it was the first serious counter example against the last theorem of Fermat because that number 3 was just on the line of integers. It was not something inside some modulo number space or so, that was the real deal for the first time in 350 years.

Will math professors react on such a finding? Of course not. For example they would reason before the finding that if you can’t use 3D complex numbers to find only one significant result in algebra or number theory, that proves 3D complex numbers are useless.
And after the counter example to the last fermat theorem? Well math professors are the most smart people on earth, they are higly agile and adeptable and now the reasoning will likely be something like: In the entire history of mathematics nobody has ever used 3D Gaussian integers. This all is so far fetched that this is not serious math

Well that is how they are and there is no changing that kind of behavior I just guess. Anyway enough of the blah blah blah. The post is just over 3 pictures long, has no mathematical significance anyway and I hope you have some fun reading it.

For odd n you get a minus sign, for even n you get a plus sign.
It is not significant math, but it sure looks very cute!

It is now one hour after mdinight so it is time to hit that button named ‘Publish website’. Live well & think well my dear reader. See you in the next post or so.

What is one-way light speed? + A plasma lamp in a magnetic field.

Lately the Veritasium guy from the Youtube channel with that name came out with a video that made me think. It seems that the only way light speed has been measured experimentally is by using a mirror and as such you always measure a so called ‘two-way light speed’ average. It is possible that in this universe light has some preferred direction and in that derection it goes faster compared to say the opposite way.

You might wonder as why that is but that is the old problem Mr. Einstein faced & solved: It is very hard to get two clocks synchronized when they are apart. Vertitasium explains that if light has a preferred direction, in that case it all gets even harder and rather complicated.

Anyway to make a long story short, he also claims there has never been such a ‘one-way’ experiment. That made me think about it and I think that I have found a solution that does not depend on the nasty synchronization problem. All you need is two atomic clocks that are always a fixed distance apart. It gets more complicated compared to where there is perfect sync but if the universe has a preferred direction for light to go in, from the data you collect you should be able to find it.

First let me show you via a screen shot from the video what the usual way is to experimentally measure the speed of light:

Here you send out and receive light at the same spot in space.

Please first look at the video so you understand the problem here:

In the next six pictures I try to explain that using two atomic clocks on two satellites can pull the trick off. Both satellites have a laser or for that matter any em radiation would do like normal radio waves. And on both satellites there is perfect registration of the local time of the times a laser signal was put out or received. Both satellites should be in the same strength of the local gravity field so that their atomic clocks run at equal speeds. Every day both satellites send out one laser pulse on a fixed time and on a daily basis these send & receiving times are recorded.

So far for the first video.

We proceed with a video from the Brainiac channel. On Youtube there are more than one Brainac channels, I mean the guy with the big magnets. And with big I really mean big, the most heavy ones are a staggering 13 kg. A couple of years ago I wondered if I should buy a plasma lamp in order to study how my own set of small neodymium magnets should influence the plasma. These lamps cost only 20€ so that was not the problem. But I have already plenty of lamps so I decided not to do it. After all the photo’s from how an old television set reacts on the neodymium magnets should be enough.

Anyway that is what I thought: Given the fact the audience is composed of scientists, simply communicating the facts should be enough. And applying a bit of logic simply says electrons are not magnetic dipoles but in order to explain the behavior on an old television set is far better explained by electrons being magnetic monopoles. Of course now we are five or six years further down the timeline all I observed is that university people are still very good at just one thing: being important. And no no no, of course we do not talk about that. Electrons magnetic monopoles? Great minds from physics, also people who were very important, said it ain’t so. So no no no, we are important and those crazy people from outside science should shut up and pay the taxes we need for being so important.

Yet now a few years later the video from the Brainiac guy shows that the plasma in the plasma lamp does not react at all as you might expect from a bunch of magnetic monopoles. On the contrary: If he applies one of those 13 kg neodymium magnets, the plasma lamp stops working. So I am glad I never bought one of those lamps because that would make me doubt my own insights that were derived from the electron cannons in the old television set… But the Brainiac guy has much more electronic equipment and he soon found out that the plasma in a plasma lamp is steered by and alternating electric current. So the plasma shakes hin und her with a high frequency and it is not streaming in one direction or so…

Furthermore he explains perfectly why the lamp stops working: the applied magnetic field from the 13 kg magnet stops the transformator in the plasma lamp from working properly. And that explains why the lamp stops working… By the way, if electrons were really magnetic dipoles, the 13 kg magnet would never hinder the functioning of a transformator because a magnetic dipole the size of an electron is by definition neutral for external magnetic fields.

Well here is the perfect video if you want to understand a bit of nature and in case you are one of those fake scientist only occupied with the importance of self, why not walk to a mirror so you can look at yourself?

It’s a great video!

This post is getting far to long for the attention span people have in the present media environment. But I want to show you also a part that the Brainiac guy does not understand: the next screen shot from his video shows only electrons that are repelled by the giant magnet he uses. If he would have used an other direction you could have seen also the electrons that are attracted by the magnet. All of this stuff nicely confirming year in year out that it is impossible for electrons to be magnetic dipoles…

Ok, end of this far too long post. See you in the next post & thanks for having a long enough attention span for reading these very words.

Funny format/more pics needed & idiots at MIT observed?

Slowly but surely I am getting better at the GIMP (a free program for manupilating images). Right now I can place pictures in perspective while the GIMP als has a 3D picture manupilating tool I haven’t even used by now. Now one day I will have to end my usual way of formatting pictures, the biggest disadvantage is that you must always have a windows XP computer. May be it is possible to run a virtual XP on a windows 10 system but I never managed to get it properly at work. On the other hand computers in for example pin automats (money machines at the bank) still seem to work on XP. So likely in the future their will still be motherboards and CPU’s that allow for a fresh install of that mighty windows XP system.

Anyway with GIMP you can easily use the perspectives tool and place rectangular selections into a perspective like shown below:

This is the original as found near my birth village.

I have no clue if this is readable. At 1440 pixels I could read it but now…

No, the above format for publishing math does not work properly I guess. It is a screenshot from a post from earlier this year: Calculating the 3D exponential circle using first principles.

Now in another development I was also not very lucky. I found a few pictures of the creation of an electron-positron pair in a bubble chamber. Now if my view on electrons and positrons being magnetic monopoles is correct and because in a bubble chamber you have a magnetic field present, from the moment of creation they should start accelerate in opposite directions. And I thought all I needed was just one Google picture search but the results were a bit disappointing. Yes you can find some pictures but most of the time it is just one photo that is recycled over and over. Another disadvantage is that you see the electrons and positron bubble paths only in the direction of the magnetic field that is applied so that the electrons & positrons can do their typical circular movement due to the Lorentz force so it is abosolutely not possible to see the eventurental acceleration into the direction of the magnetic field lines… Well most of the time you find the next picture and yes it looks like the one particle is ‘going in’ and the other is ‘going out’ but that is all there is. No sideviews found at all and that is what I need. An interesting phenomenum that should occure is the next: Due to the bubbles there has to be some kind of drag on the electron and positron. So their velocities along the magnetic field lines should take on some limiting value. If that can be found that alone should be enough to validate that electrons canny magnetic charge and that all this ‘tiny magnet’ stuff is total bs.

This is one of the miracles of the universe.

And the last item for this post is the MIT people. Again it is blah blah blah because we now have stronger magnets we can make smaller nuclear fusion reactors. But if my view of electrons being magnetic monopoles in the end will be victorious, stronger magnetic fields do not solve the acceleration problem. Electrons get constantly accelerated and because there are two types of electrons namely the north and south charge they will get accelerated into opposite directions.

I have been saying this for years and years and still the university people keep on doing their retarded thing and not proves that electrons are actually magnetic dipoles. In the meantime those imcompetent shitholes keep on making promesis for a better future when it comes to energy for the population and blah blah this & blah blah that.

Remember the time that Lockheed Martin came out with the same kind of bullshit? By now we should have had the first mobile fusion reactors and of course they are nowhere to be found. And now we have exactly the same nonsense from MIT.

It’s not going to work, but try explaining that to a bunch of total incompetents! Here is a Youtube with the MIT stuff (about six minutes long):

One more proof university people are incompetent.

We are dealing with a bunch of people too stupid to find out in centuries of time how 3D complex numbers should be found (or defined). And all I get is total neglect and they go on with their blah blah blah. Give us, the tax payer, finally some fucking proof that electrons are magnetic dipoles and that the structural instability of the plasma is not caused by accelerated electrons! Of course, as usual, there will be silence. Only the sound of silence combined with blah blah like ‘we now have stronger magnets’. Climate change is not going away in the meantime and it is charlatans like this that will make people going on with polluting the atmosphere more and more because there is some false hope nuclear fusion will save the day. Once more: Likely it is not going to happen. Look at the Lockheed Martin folks; they still have nothing to show for despite their past blah blah blah about having stronger magnets…

Ok, that was it for this post. The next post is about a math article from the preprint archive that is about 3D complex numbers. So keep tuned and see you next time.

Two video’s to kill the time.

Two very different subjects: the earth magnetic field and the standupmath guy has a great video about the perimeter of an ellips.

Video 1) From the Youtube channel Scishow a video with the title
‘Satellite Squad Goals: The Cluster Mission to the Magnetic Field’.
For me that video contains relatively much completely new stuff, the fact that there are 4 satellites out there constantly monitoring the earth magnetic field was unknown to me.
And the presenter of the video claims that after the so called ‘magnetic reconnection’ the charged particles from the solar wind slam into the north & south pole of the earth with a staggering 10 thousand km/sec. I did not know it was that fast…
The official explanation for the acceleration of for example single electrons is that you must have an inhomogeneous magnetic field. After all these folks think that electrons have two magnetic poles and if the electron goes through a magnetic field that varies in space the two forces on the north and south pole of the electron do not cancel out and there is a net force responsible for the acceleration. There is only one problem: they simply multiply the electron magnetic moment against the gradient of the magnetic field and voila: that’s it. But if the acceleration is explained as a difference in opposing forces, should you not take into consideration the size of the electron? Yes of course, but since physics professors are so terribly smart why don’t they do this? Well if you take the size of the electron into your calculations, there is no acceleration or better it is basically zero.

Now years ago I tried to estimate how stong a magnetic field had to be to accelerate one of those dipole electrons with a acceleration of only 1 meter per second squared. If memory serves I used an ‘electron size’ of 10 to the power -15 meter (in reality it is even much smaller) and again if memory serves you needed magnetic fields with a gradient of over 100 thousand Tesla per meter.
And if you think about that estimation it makes a lot of sense: electrons are very small and as such have an extreme density given their size and mass. Say it is in the order of the density of a neutron star. And if you try something with the density of a neutron star to accelerate with the difference of a magnetic field, likely you won’t go far…

Ok, suppose for the moment that the electrons are the long sought magnetic monopoles. So they are not magnetic dipoles but the electrons themselves are magnetic monopoles just like they are electric monopoles.
Now look at the picture below: it is about when the magnetic reconnetion just closed. Just before the closing along the magnetic field lines emergin from the earth north & south pole, the particles were expelled because they carry the wrong magnetic charge. But when reconnection takes place, the particles that were expelled by say the earth south pole find themselves back on a trajectory going to the earth north pole. And as such they will get accelerated into that direction.

If you accept the magnetic monopole of the electron, stuff like this becomes logical…

Yet a couple of years ago when I published those estimations that show you need crazy gradients for all that shit to be true, of course nobody reacted. All those university professors in physics, when you tell them that extra ordinary claims like the electron being a magnetic dipole also needs extra ordinary proof, all of a sudden they are deaf deaf deaf.
These people they don’t have any experimental proof that the electron is a magnetic dipole. And worst of all: They don’t even think about it…
Finally, here is the SciShow video:

Video 2) From the Standupmath guy a video about the perimeter of an ellipse. Weirdly enough it is not possible to find a more or less simple expression for the perimeter of an ellipse. Of course a long long time ago I tried to find an expression myself but using the standard stuff like arc length brings very fast a lot of headache. With the present day of math tools it is completely not possible to derive a good expression for the perimeter of an ellipse.
What I did not know is that there is a world of approximation stuff out there for estimation such ellipse perimeters. And of course in itself this has it’s own logic: after all an ellipse is more or less completely defined by saying what it’s two half axes a and b are. You can always fix one of those axis to 1 say b = 1 and study the perimeter problem as a function of the variable a. You do some curve estimation, you drink a few pints of beer and later when you are sober again you drink some green tea.
And you conclude some curve estimation is relatively good but that all in all the ellipse perimeter problem is just too large for our human brains that in general are not good at doing math.
There is only one exeception; Ramanujan.
In the next picture you see one of those Ramanujan approximations and once more you see how the human mind should work if we were living in a better world:

In the name of Ramajujan: Why not turn existing math professors into bio diesel?

The video is here, 21 minutes long but worth the time:

Ok, that was it for this post. Think well, live healty and try to make some bio fuel from the basic ingredient known as ‘math professor’.
In that case we will find ourselves back in a better world, or not?