Diagonal matrices for all 4D complex numbers.

This website is now about 3 years old, the first post was on 14 Nov 2015 and today I hang in with post number 100. That is a nice round number and this post is part 15 in the series known as the Basics for 4D complex numbers.

We are going to diagonalize all those matrix representations M(Z) we have for all 4D complex numbers Z. As a reader you are supposed to know what diagonalization of a matrix actually is, that is in most linear algebra courses so it is widely spread knowledge in the population.

Now at the end of this nine pictures long post you can find how you can calculate the matrix representation for M(l) where l is the first imaginary unit in the 4D complex number system. And I understand that people will ask full of bewilderment, why do this in such a difficult way? That is a good question, but look a bit of the first parts where I gave some examples about how to calculate the number tau that was defined as log l. And one way of doing that was using the pull back map but with matrix diagonalization you have a general method that works in all dimensions.

Beside that this is an all inclusive approach when it comes to the dimension, in practice you can rely on internet applets that use commonly known linear algebra. Now if you are a computer programmer you can automate the process of diagonalization of a matrix. I am very bad in writing computer programs, but if you can write code in an environment where you can do symbolic calculus in your code, it would be handy if that is on such a level you can use the so called roots of unity from the complex plane. After all the eigenvalues you encounter in the 4D complex number system are always based on these roots of unity and the eigenvectors are too…

This post number 100 is 9 pictures long, as usual picture size is 550 x 775 pixels.
In the next post number 101 we will use this method to calculate the matrix representation of the number tau (that is the log of the first imaginary unit l).

Ok, here are the pictures:

That´s it, in the next post we go further with the number tau and from the eigenvalues of tau calculate the matrix representation. So see you around.

Magnetism: A small contest with the honorable Max Planck Institute around their Wendelstein 7_X stellarator fusion reactor.

This post is on magnetism only but it is more or less in the planning that the next post on 4D complex numbers is about diagonalization of a 4D complex number. After that we have (may be) to try and calculate the number tau in this way.

Ok magnetic stuff:
Since I think that electrons are not magnetic dipoles but carry one of the two possible magnetic charges, electrons will always be accelerated by magnetic fields just as they are by electrical fields.

That basic idea of magnetic charge makes a whole lot of things much more easy to understand. For example electron pairs are only observed as pairs, never as triples or whatever what like circular structures of 17 electrons…

Let’s look at the most simple molecule we know of: molecular hydrogen. Two atomic hydrogen are both electrically neutral, why should they bond anyway? But if the two electrons of those two hydrogen atoms carry opposite magnetic charge, that could be a reason as why they want to bond anyway.

And if you think about it that way (the protons also carry some magnetic charge) all of a sudden a hydrogen molecule is nothing but a balancing act between electric and magnetic charges.

Once more: Why do we only observe electron pairs in chemical bonding via electron pairs? If the electron was indeed a magnetic dipole, what explains we only observe electron pairs?

I made a beautiful drawing of two electron magnetic dipoles, I know I know it is a bit simplistic with two simple lobes of magnetism in a 2D representation. But here it is & how is all that bonding in the electron pair supposed to go?

Why do we only observe electron pairs and not other forms of possible magnetic dipole formations? We have never seen only one electron triple as far as I know.

I know it is a terrible drawing. Always when I show drawings to other human beings they always get tears in their eyes…:)

In the beginning I just thought that the tears were explained because those people could see the underlying beauty of my drawings. But later they also started vomiting and I was just scratching my head and decided to post less and less drawings because that vomit is so smelly and dirty.

But let’s not talk about the smell of vomit but a bit more on the wonderful progression the Max Planck Institute is making with their expensive nuclear fusion reactor known as the Wendelstein 7-X fusion reactor. They have set breathtaking records like in the next link:

Wendelstein 7-X achieves new world record
https://www.ipp.mpg.de/4413312/04_18

Also funny:

Wendelstein 7-X makes the cover
https://www.ipp.mpg.de/4431844/nature-physics

If my version of electron spin carries more truth compared to the retarded version of every electron is a magnetic dipole, if that is true nuclear fusion machines like Tokamak or the Stellarator design as used in the Wendelstein 7-X reactor will not work properly.

So let’s make it a little contest between me and the entire Max Planck Institute, in particular the IPP parts of it (IPP = Institute for Plasma Physics).

Now that is German stuff so I will use a German video as found on the internet where a German guy named Harold Lesch asks questions at another German guy named Hartmut Zohm. One of those questions is answered at 3.33 minutes into the video where Harold asks if there are still some major ‘technical hurdles’ that have to be taken…
Hartmut Zohm says: Das haben wir alles schon ausgeraumt.
Loosely translated the answer says that ‘everything has been cleaned out’.

Here is the video:
Harald Lesch & Hartmut Zohm zur Fusionsforschung

And of course a picture of how it looks to observe two humans not understanding electron acceleration by magnetic fields:

So what is the little contest between the Max Planck Institute and me?

Very simple: They will keep on going with the insight from the standard model of physics that says electrons are magnetic dipoles. And from my side I will keep on insisting that electrons are the long sought magnetic monopoles and as such are accelerated by magnetic fields.

It will take some time to let this pan out, after all the Wendelstein 7-X stellarator is not something you turn on like a light bulb. But one thing is clear; the longer the machine is turned on the longer the electrons get accelerated and likely this is creating a long list of plasma stability problems like ever growing turbulence. Or more and more electrons smashing into the vessel walls because the high speed will make them leave the magnetic field lines they follow at low speeds…

At last I want to remark that electrons as magnetic dipoles with only one of the two possible magnetic charges makes something like the formation of H2 easier to understand. But that comes with a hefty price: Now the formation of proteins becomes much more difficult to understand. If you look at animations from how proteins form very often you see the electron as a magnetic dipole and when needed it simply flips around… So what happens in reality is unknown to me, is there all kinds of electron transport going on so that the right electron is at the right place in a chemical reaction? Or are there all kinds of photons going round changing the magnetic charge of the individual electrons?

I don’t have a clue as how our human bodies actually make all those proteins…

That is the end of this post.

A correction on the 17 June 2017 post is added on 29 Oct 2018. It is just a silly typo in just an example of a possible so called trapdoor function, but last week when I read that old post again I decided to correct it. So although it is a very old post compared to the present day news cycle where idiots run the atheneum formerly known as the Federal government of the USA, I still live in timescales that evolve more slowly.

After all, almost all of the math as written down in the post about finding prime factors of huge composite numbers as they are used in internet security was found by me in the nineties. So it is over two decades old math and by other standards that is still very young math…

The original post was 15 pictures long, as usual it is very hard to understand all stuff in a single day. The human brain learns slow because all that brain matter has to rewire itself and that is a process that makes you tired, just like nature wants I just guess.

But here is a link to that old post:

Let’s Destroy Internet Security!!!

In the end I came close, I had all the technical stuff figured out but I still lacked a mechanism of converging into the direction of the prime numbers as used in for example communications encryption.

Ok, the correction itself is on the second picture of the old 17 June 2017 post.
If you don’t want to read the old post, the correction looks like this:

Ok, that was it. Till updates.

Part 14: The Cauchy integral representation for the 4D complex numbers.

It took me longer than expected to craft this update. That is also the nature of the subject; you can view and do math with Cauchy integral representation in many ways. In the end I settled on doing it just for polynomials of finite degree and even more simple: these polynomials are real valued on the real line. (So they have only real coefficients and after that are extended to the space of 4D complex numbers).

In another development, last week we had the yearly circus of Noble prizes and definitely the most cute thing ever was those evolving protein molecules. Because if you can use stuff like the e-coli bacteria you can indeed try if you can (forcefully) evolve the proteins they make… That was like WOW. Later I observed an interview with that chemistry Nobel prize winner and she stated that when she began she was told ‘gentlemen don’t do this kind of thing’.

So she neglected that ‘gentlemen stuff’ and just went on with it. That is a wise thing because if you only do what all those middle age men tell you to do you will find yourself in the very same hole as they are in…
The physics prize was also interesting, for myself speaking I was glad we did not observe those physics men totally not understanding electron spin but with the usual flair of total arrogance keep on talking about spin up and spin down.

You can also turn that spin nonsense upside down: If elementary particles only carry monopole electrical charge than why should electrons be bipolar when it comes to magnetism? That Gauss law of magnetism is only a thing for macroscopic things, there is no experimental proof it holds for quantum particles…

But let’s talk math because this update is not about what I think of electron spin. This is the second Cauchy integral representation I crafted in my life. Now the last years I produced a whole lot of math, my main file is now about 600 pages long. But only that very first Cauchy integral representation is something that I printed out on a beautiful glossy paper of size A0. That first Cauchy integral representation was on the space of 3D numbers and there life is hard: The number tau has determinant zero and as such it is not invertible. But I was able to complexify the 3D circular numbers and it was stunning to understand the number tau in that complexification of the 3D circular numbers. Just stunning…

Therefore I took so much time in trying to find an easy class of functions on the space of 4D complex numbers. I settled for easy to understand polynomials, after all any polynomial gives the same value everywhere if you write them as a Taylor series.
Since this property of polynomials is widely spread I can safely say this in this part 14 of the basics to the 4D complex numbers we have the next Theorem:
THEOREM: The math will do the talking.
PROOF: Just read the next 12 pictures. QED.

As usual all pictures are 550 x 775 pixels in size. I also use a thing I name ‘the heart of the Cauchy integral’, that is not a widely known thing so take your time so that the mathematical parts of your brain can digest it…

I truly hope the math in this update was shallow enough so you can use it in your own path of the math that you like to explore.

End of this post, may be in Part 15 we will finally do a bit more about the diagonalization of 4D complex numbers because that is also a universal way of finding those numbers tau in the different dimensions like the 17D circular numbers & all those other spaces.

Have a nice life or try to get one.

Part 13 of the basics of 4D complex numbers: Factorization of the determinant.

It is about high time for a small update. Originally I wanted to include a little rant against all those math professors that have stated that the so called Euler formulae for the exponential circle in the complex plane is the most beautiful piece of math ever.

How can you say that and after all those other exponential circles and curves I found stay silent year in year out? We now have a fresh academic year and likely the new year nothing will happen again.

The same goes for magnetism, if it is true electrons carry magnetic charge one way or the other this will have huge economical impacts in the long run. Not only can you better understand how spintronic devices can work but as a negative also understand how nuclear fusion with those Tokomak things will never work because of the electron acceleration.

In my view this is important given the speed of climate change and how slow we react on it while at the same time we are always promised golden mountains of almost free energy if only we had nuclear fusion…

But likely university people are university people so we will just observe one more academic year of just nothing.

__________

After having said that, in this post we calculate the determinant via multiplying the four eigenvalues every 4D complex number Z has. Of course that is always when such a Z is viewed as it’s matrix representation M(Z).

You can do much more with that kind of stuff, in the previous part number 12 we unearthed the eigenvalues and eigenvectors so we can also do the nice thing of matrix diagonalization. I have not planned anything about the content in the next few parts of these small series on 4D complex numbers. So we’ll see.

This post is five pictures long, at the end I also show you the so called cylinder equation from 3D space (circular version).

Have fun reading it and thinking about it a little bit. See you around.

Before the actual post I will show you the teaser picture as published on the other website, it contains the matrix who’s determinant we are going to factor. When I read all these posts on 4D complex numbers backwards it was only in the basics number 3 where I mentioned this explicit matrix representation M(Z).

In the teaser picture you also see the main result. I never worked out the determinant of the matrix M(Z) via a method like expansion via the minors or so. Just going straightforward for the eigenvalue functions and multiply these in order to get the determinant for any 4D complex number Z.

So it is the determinant of the matrix representation M(Z) we are going to factorize.
Here we go:

 

 

 

 

 

Ok, let´s not rant because why waste all that emotional energy on university people?
But it is now almost your years back since I crafted a pdf about the first 10 exponential circles and curves I found:

An overview of exponential circles and curves in …
http://kinkytshirts.nl/pdfs/10_exponential_circles_and_curves.pdf

That was from 22 December 2014. We can safely conclude that at most universities a lot is happening, but it is mostly weird stuff. Weird stuff like ‘The sum of all integers equals minus 1/12…’ Oh oh, if you have people like that inside your ranks how can that bring any good?

So is it science or comedy in the next video?

It is more like comedy I just guess…

But what would life be without comedy? That would also be a strange place to live, a life without observable comedians likely is a less funny place to live in.

Hey let’s pop open one more pint of beer. By the way in the quantum world every thing is different and at first I could not believe that, why would that be? It was years and years later I found out that quantum particles like electrons never drink beer. Just never. And at that point in time I finally understood just how different the quantum world is compared to our human world.

Till updates.

Part 12 of the 4D complex numbers: The four eigenvalue functions for a arbitrary 4D complex number.

In Part 11 we found the eigenvalues and eigenvectors of the first imaginary unit l (with of course the property l^4 = -1). But if we have those eigenvalues for l,it is easy to find the eigenvectors of powers of l.

But every 4D complex number is a sum of a real part and the three imaginary parts with the units  l,  l ^2 and l ^3. So from a linear algebra point of view it is also easy to find the eigenvalues of such combinations of  l. Needless to say that in this post you should read  l and it powers mostly as it’s matrix representation M(l).

I have to admit that I very often avoid the constant need for the matrix representation, for example I mostly write det(l) for the determinant of M(l). But it makes texts just so unreadable if you constant write det(M(l)), I do not like that.

When you understand how to calculate the eigenvalue functions as shown below, please remark it looks a like the so called discrete Fourier transform.

This post is five pictures long (each 550×775 pixels) although the last picture is rather empty… And why no an empty picture? After all when you had a paper book in the good old days, there were always empty pages in it. Sometimes it was even written that ‘This page is left empty intentionally’. And in those long lost years that was the crime of the century because if you write on a page that it is empty, that is never true…

In the next post we will take a look at the missing equation we still have when it comes to the calculation of the 4D exponential curve when it comes to the  sphere/cone equation. we missed one equation to arrive at a 1D solution for our exponential curve.

If you also include the demand that the determinant of the exponential curve is 1 all of the time, you can squeeze out more equations inside the 4D complex numbers.

Before we say goodbye, here is a link to the matrix representation of the discrete Fourier transform. But take you time when thinking about matrices like in the link or the Omega matrix as above.

DFT matrix
https://en.wikipedia.org/wiki/DFT_matrix

Ok, that was it. Till updates.

Part 11 of the 4D complex numbers: The eigenvalues and eigenvectors from the first imaginary unit.

First a short magnetic update:

In reason 66 as why electrons cannot be magnetic dipoles I tried to find a lower bound for the sideway acceleration the electrons have in the simple television experiment.

To put it simple: How much sideway acceleration must the electrons have to explain the dark spots on the screen where no electrons land?

The answer is amazing at first sight: about 2.5 times 10^15 m/sec^2.
This acceleration lasts only at most two nano seconds and in the end the minimum sideway speed is about 5000 km/sec so while the acceleration is such a giant number it does not break relativity rules or so…
Here is the link:

16 Aug 2018: Reason 66: Side-way electron acceleration as in the television experiment.
http://kinkytshirts.nl/rootdirectory/just_some_math/monopole_magnetic_stuff03.htm#16Aug2018

You know I took all kinds of assurances that it is only a lower bound on the actual acceleration that takes place. For example I took the maximal sideway distance as only 0.5 cm. Here is a photo that shows a far bigger black spot where no electrons land, so the actual sideway distance if definitely more than 0.5 cm.


__________

The math part of this post is not extremely thick in the sense you can find the results for yourself with the applet as shown below. Or by pencil & paper find some 4D eigenvalues and the corresponding eigenvectors for yourself.

But we need them in order to craft the so called eigenvalue functions and also for the diagonal matrices that come along with all of the matrix representations of the 4D complex numbers Z.

I hope I wrote it down pretty straightforward, this post is five pictures long. And if you like these kind of mathematical little puzzles: Try, given one of the eigenvalues like omega or omega^3, find such an eigenvector for yourself. It is really cute to write them down, multiply them by the eigenvalue and observe with your own eyes that indeed we have all that rotation over the dimensions included that omega^4 = -1 behavior.

This post is five pictures long, it is all rather basic I hope.

The applet used is from the WIMS server (https://wims.sesamath.net/), look for the Matrix calculator in the section on Online calculators and plotters.

For the time being I think that in Part 12 we will craft the eigenvalue functions for any 4D complex number Z. Ok, that was it for this update.

Part 10 of the 4D basics: The 4D imitators of i rotate everything by 90 degrees.

This is a short and simple update that nicely fits into the series of the basics of 4D complex numbers. It is only 3 pictures long and all we do is multiply a 4D complex number A by one of the imitators of i and after that calculate the inner product between A and A times the imitator of i.

Compare it to the complex plane: Take a 2D complex number z from the complex plane, write it as a vector and also write iz as a vector. Take the inner product and conclude that it is zero so that z and iz are perpendicular to each other.

That’s all we do in the space of 4D complex numbers:

I hope this was basic enough…  See you in the next post.

A few numerical results related to the 4D sphere-cone equations using the four coordinate functions of the 4D exponential curve.

This is Part 9 in the basics to the complex 4D numbers. In this post we will check numerically that the 4D exponential curve has it’s values on the 4D unit sphere intersected with a 4D cone that includes all coordinate axes. In 3D space the sphere-cone equations ensure the solution is 1 dimensional like a curve should be. In 4D space the sphere-cone equations are not enough, there is at least one missing equation and those missing equations can be found in the determinant of a matrix representation M(Z) for a 4D complex number Z.

But we haven’t done any determinant stuff yet (because you also need a factorization of the 4D determinant in four variables and that is not a trivial task). So this post does not contain numerical evidence that the determinant is always one on the entire exponential curve.

If you want to compare this post to the same stuff in the complex plane:
In the complex plane the sphere-cone equation is given by x^2 + y^1 = 1 (that is the unit circle) and if you read this you probably know that f(t) = e^{it} = cos t + i sin t.

You can numerically check this by adding the squares of the sine and cosine for all t in one period and that is all we do in this post. Only it is in 4D space and not in the two dimensional complex plane…

This post is seven pictures long (all of the usual size 550 x 775).

All graphs in this post are made with the applets as found on:

WIMS https://wims.sesamath.net/wims.cgi?lang=en

For the two graphs from above look for ‘animated drawing’ choose the 2D explicit curves option. There you must use the variable x instead of time t.

Here is the stuff you can place in for the sphere equation:

(cos(pi*x/2)*cos(pi*x/4))^2 +
(0.707107*(cos(pi*x/4)*sin(pi*x/2) + sin(pi*x/4)*sin(pi*x/2)))^2 +
(-cos(pi*x/2)*sin(pi*x/4))^2 +
(0.707107*(cos(pi*x/4)*sin(pi*x/2) – sin(pi*x/4)*sin(pi*x/2)))^2

If you just ‘cut & paste’ it should work fine…
That should save you some typo’s along the way

Ok, that is what I had to say on this numerical detail.

On a possible model for solar loops: rotating plasma.

Yes that is all there is: spinning plasma… At the end of last year’s summer I had figured out that if indeed electrons have far more acceleration compared to the protons, if on the sun the solar plasma starts rotating this caused a lot of electrons flying out and as such the spinning plasma would always be electrically positive.

But at the time I had no clue whatsoever about why there would be spinning plasma at the surface of the sun but lately I found the perfect culprit: The sun spins much faster at the equator compared to the polar regions.

This spinning plasma is visible at the surface of the sun as the famous sun spots and it is known these sun spots are places of strong magnetic fields.

There is a bit of a weak spot in my simple model that says all spinning plasma creates a strong magnetic field because if the solar spots are at there minimum none of them are observed for a relatively long time. The weak spot is: Why would there be no tornado like structures be made during this minimum of solar spots? After all the speed difference is still there between the equator regions and the polar regions.

Anyway the good thing is that my simple model is very falsifiable: If you can find only one spinning tube-shaped or tornado-shaped plasma structure that not makes magnetic fields, the simple model can be thrown into the garbage bin.

The simple model is found in Reason number 65 as why electrons cannot be magnetic dipoles on the other website:

Reason 65: A possible model for solar loops going between two solar spots.
http://kinkytshirts.nl/rootdirectory/just_some_math/monopole_magnetic_stuff03.htm#22July2018

The main feature of the solar loops is that before your very own eyes you see all that solar plasma accelerating while according to the standard model of physics this is not possible.

Now there are plenty of physics professors stating that electrons can be accelerated by a magnetic field but if you hear them saying that you know they have never done the calculations that make it at least plausible that non constant magnetic fields are the main driver of electron acceleration.

Here are two nice pictures of what I am trying to explain with my simple model.

The above picture is in the UV part of the spectrum.

After having said that, the next post is like planned about numerical evaluations related to the four coordinate functions of the new found exponential curve f(t) for the 4D complex numbers. I hope to finish it later this week.

Now we are talking about cute numerical results anyway, in the next picture you can see numerical validation that the number tau in the 4D complex space is invertible because the determinant of it’s matrix representation is clearly non-zero.

You might say ‘so what?’.  But if the number tau is invertible on the 4D complex numbers (just like the complex plane i has an inverse) in that case you can also craft a new Cauchy integral representation for that!

Again you might say ‘so what?’. But Cauchy integral representation is highly magical inside complex analysis related to the complex plane. There is a wiki upon it but the main result is a bit hard to swallow if you see it for the first time, furthermore the proof given is completely horrible let alone the bullshit after that. Anyway here it is, proud 21-century math wiki style:

Cauchy’s integral formula
https://en.wikipedia.org/wiki/Cauchy%27s_integral_formula

Ok, let’s leave it with that. Till updates my dear reader.

Part 8 of the 4D basics: Wirtinger derivatives.

This is the 91-th post on this website so surely but slowly this website is growing on. This post was more or less written just for myself; I don’t know if the concept of Wirtinger derivates is used a lot in standard complex analysis but I sure like it so that’s why we take a look at it.

The idea of a Wirtinger derivative is very simple to understand: You have some function f(Z) and by differentiating it in the direction of all four basis vectors you craft the derivative f'(Z) from that.

At the basis for all the calculations we do in this post are the Cauchy-Riemann equations that allow you to rewrite the partial derivatives we put into the Wirtinger derivative.

The main result in this post is as follows:
We take our Wirtinger operator W and we multiply it with the 4D complex conjugate of W and we show that this is a real multiple of the Laplacian.

The 4D case is more or less the same as on the complex plane, that is not a miracle because in previous 4D basics we already observed two planes inside the 4D complex numbers that are isomorphic to the complex plane. So it is not much of a surprise the entire 4D space of complex numbers behaves in that way too; all functions are harmonic that is the Laplacian of such a function is zero.

This post is ten pictures long, most of them are size 550 x 775 but a few of them are a bit broader like 600 x 775 because the calculations are rather wide.

On the scale of things this post is not ultra important or so, it is more like I wrote it for myself and I wanted to look in how much this all was different from the three dimensional case.

Here are the pics:

Further reading from a wiki (of course that is only about 2D complex numbers from the complex plane):
Wirtinger derivatives
https://en.wikipedia.org/wiki/Wirtinger_derivatives

Ok, that was it. Till updates.