Category Archives: Magnetism

Three physics experiments compared on 2 spin criteria.

In this post I want to look at three experiments from physics that all use a vertical magnetic field that is applied to unpaired electrons. The three experiments are:
1) The famous Stern-Gerlach experiment from 1922.
2) The Einstein-de Haas effect.
3) The muon g-2 experiment from Fermilab.

And the two criteria I use is also simple to understand:
1) Are there weird energy problems?
2) Is the electron spin alignment probabilistic yes or no?

You might think “Why should that have any importance at all?” Well the importance lies in the fact that all official explanations for the outcomes of the 3 above mentioned experiments, if you think about it, they all exclude each other.

For example the Stern-Gerlach experiment is often used to point at the probabilistic nature of measuring the direction of electron spin. And it is the 50/50 split in the beam of silver atoms that is the actual evidence of the fundamental probabilistic nature of measuring electron spin with a vertical magnetic field.
But in that Einstein-de Haas effect experiment, the results are always explained by all electrons doing the same and it is impossible to find the word “probabilistic” in such explanations. To focus the mind a little bit: If you would have a 50/50 probability in spin alignment with the applied vertical magnetic field, in that case there would be no Einstein-de Haas effect at all.
Now what is a weird energy problem? For me it is as simple as the so called anti-alignment of electron spins. It is kinda weird that half of the electrons would align their spins and as such lower their potential energy and the other half weirdly raises their potential energy?
Please remark this simplest form of a weird energy problem is a direct consequence of viewing electrons as bipolar magnets, if you skip that assumption and view electrons as magnetic monopoles you do not have this simplest of energy problems.
The post is four pictures long and I hope I won’t forget to place a few links to the three experiments although it is very simple to do that yourself.
So lets go.

Ok, that was it more or less. So the 3 experiments might be about electrons in some vertical magnetic field, the explanations vary widely. Let me close with a few links to the 3 experiments.

Link 1: A wiki about the Stern-Gerlach experiment:
Stern–Gerlach experiment. Link used: https://en.wikipedia.org/wiki/Stern%E2%80%93Gerlach_experiment

Halfway in the wiki they show the so called repeated SG experiments, the problem is that for 10 years now I can’t find anyone who did a successful repeated SG according to the stadard theory. But in the wiki the authors seem to think, just like a lot of physics professors, that such repeated experiments have been done. But if it had been done, that would validate the probabilistic nature of quantum mechanics when it comes to electron spin and as such the person(s) who did that experiment would have gotten a Nobel prize for that. As far as I know, there is no Nobel prize handed out for such a thing, anyway I never heard of it. So the next picture is total scientific crap as far as I know:

Link 2: The Einstein-de Haas effect. Again a standard wiki:

Einstein–de Haas effect Link used: https://en.wikipedia.org/wiki/Einstein%E2%80%93de_Haas_effect

In order to show the source of the quote in picture 03 of the main text above, here is the quote once more:
Therefore, in pure iron 96% of the magnetization is provided by the polarization of the electrons’ spins, while the remaining 4% is provided by the polarization of their orbital angular momenta.

That abundantly shows they think all electrons do the same.

Link 3: I did some arbitrary choice on the preprint archive about the last results of Fermilab with their g-2 experiment. My main problem with their explanation is of course that while using a vertical magnetic field, they claim the muon spin stays horizontal. So what happens to the good old torque that this vertical magnetic field does remains a mystery. And the pdf from the preprint archive is not that important but I want to show it to you so you can read it yourself and conclude that this all is left out and you get a bunch of hard to understand gibberish.

New results from the Muon g−2 Experiment
Link used: https://arxiv.org/pdf/2311.08282

And now you are at the end of this post about electron spin.

Comparison: Einstein de Haas effect versus the Stern Gerlach experiment.

This post is basically a video about the so called Einstein de Haas effect from the Action Lab (a video channel). This experiment is often mentioned as experimental validation that electrons have so called “Intrinsic angular momentum”. The experimental setup is very easy to explain, look in the next picture:

A metal cylinder is hanging from a wire (the guy in the video uses tooth floss because that has no winding twist in it so the cylinder will not rotate). If placed in a vertical magnetic field or such a vertical magnetic field is flipped on, the cylinder rotates a little bit.
Often in the experimental setup a coil magnet is used, but it can be any more or less perfect vertical magnetic field. The effect of the rotation is rather small so in video’s like this you often see some shiny or reflecting metal glued to the cylinder and with a light the rotation is amplified for us to see.

This is all there is; a relatively simple experimental setup.

The explanation you always see is that the unpaired electrons in the metal cylinder align themselves with the applied magnetic field. So that’s the logic for the explanation of this experiment.

How different is it for the Stern Gerlach experiment that is very similar because it is about the behavior of unpaired electrons in a vertical applied magnetic field. In the SG experiment the beam of silver atoms is split in two and now the logic is as next, quote:

This means that when you take a beam of electrons whose angular momenta are all randomly oriented, if you measure the z component of angular momentum you get one of only two different values.

But if your explanation in the Einstein de Haas effect would be this 50/50 percent probability in spin up or spin down, that would imply zero rotation and therefore once more day the physics professors will talk out of their necks and now it must be logical that all electrons align.
Source of my above quote:
Measuring Electron Spin- the Stern-Gerlach Experiment

Furthermore it is a fundamental basis of quantum computing that it must be possible to have superpositions of quantum states. So if the explanation of the Einstein de Haas effect would be correct, there is no randomness in electron spin measurements via application of external magnetic fields. You just can’t eat it from both sides: either all electrons will do the same or the probabilistic nature of quantum mechanics is true. Anyway here is the video with the title: Do Electrons Really Have “Intrinsic” Angular Momentum?

https://www.youtube.com/watch?v=uQ5w4_0S2l4

That was it for this post on magnetism in particular the very different explanations you hear when we are talking about the same thing: The reaction of an electron on a vertical magnetic field.

Two more video’s on the Stern Gerlach experiment from the year 1922.

The two video’s are very different, the first and best one is from the guy from the Science Asylum that is also a video channel. And for the first time I looked up what his name is and that seems to be Nick Lucid. The main reason for me to write this post is the fact that Nick is the very first person who tries to explain why electrons do anti-align. He thinks it has to do with the so called ‘intrinsic’ angular momentum that electrons have. I think that does not solve the energy problem in any serious shape or form, the energy problem is of course that the potential energy of the electrons gets raised in they turn into an anti alignment with the applied magnetic field.

To put this problem in a more simple to understand thing with say gravity: If you throw a piece of rock perfectly horizontal, it will move sideways and only down. If it goes up that would be a serious energy problem because they higher the rock is the higher it’s potential energy and where does the rock gets that energy from? Therefore in reality you never see rocks spontaneously fly up but in quantum mechanics with electrons and magnetic fields this happens all the time. Anyway this happens all the time if it was true that electrons are tiny bipolar magnets. And of course I don’t think that, I think that electrons carry a monopole magnetic charge just like they carry a permantent monopole electric charge. The only difference is that there are two magnetic charges that electrons can have where the electric charge is always the same and is negative.

I prepared 7 images but one was not needed so there only a few screen shots. So basically 6 pictures mostly text and a few basic calculations related to the supposed way electrons get accelerated by magnetic fields. There are an additional 3 Figures so all in all 10 pictures or images and two video’s.

The first video is the best, anyway in my opinion, that’s the one from the Science Asylum. I added the second video because that is one of those many video’s that simply skip where this all runs out of the rails: Why do electrons anti-align, where comes the energy from? So lets go:

Figure 1: Screen shots from the first video.
Figure 2: How to deal with the Lorentz force in a setup like this?
Figure 3: With this setup the Lorentz force is not a hinder.

The next image is just a leftover.

If you made it till here, you can now finally see the video from Nick. That is if the video would embed and for some strange reason it does say it won’t… Anyway the title of the video is Physics Misunderstood This Experiment For Years. (For the time being even the link does not work, it is now a private video… So may be next week I’ll give it another try and see if this is a temporary thing.

And the second and last video of this post. This is much more a demonstration of how the energy problems there are with this bipolar model for the electron are just never talked about. It is at the end of the video but there he does it.

Weirdly enough this video embeds seamlessly…

That was it for this first post of the year 2025. As always thanks for your attention.

Another video on the SG experiment and an additional pdf.

I didn’t plan on another ‘just a video post’ but I am still working on a new math post on the seven properties of the number alpha. All in all that is going to be one of the longest posts written, that why it takes a relatively long time. So that’s my excuse for another ‘just a video post’.

This is another video from Dr. Jorge S. Diaz and again the video is very good made with lots of interesting historical details. In it he shows what Gerlach thought before the experiment was done, that is in the first picture below. In case you did not know it: all that stuff with a varying magnetic field from strong to weak was thought out beforehand. Only the Stern Gerlach guys thought that the silver atoms themselves would act as tiny magnets. That’s why also in the simple math below you see the emphasis on the gradient of the magnetic field.
And that brings me once more to an important critisism, not on the video but on the lack of experimental proof that electrons are not accelerated in a constant magnetic field. Ok ok there is still the Lorentz force so that’s easier said then done but it is just missing. Just like there is no experimental proof or evidence that electrons are dipole magnets.

As all video’s on the Stern-Gerlach experiment this one too fails to explain as why tiny magnets would anti-align themselves with the applied magnetic field. After all this raises their potential energy and as such I consider this an important energy problem that you only have if you view electrons as tiny magnets.
I remember that back in 2015 when I myself did see this experiment for the first time, it was the fact that the silver atoms would more towards the weaker part of the magnetic field that I just could not understand. But in one or two days I had figured out that if you view electrons as magnetic monopoles, you don’t have weird problems. But back in the time I knew just nothing about electron spin so I had some learning to do.

In the video but also other sources say that it were Einstein himself and Heisenberg who pushed heave for a so called repeated or sequential SG experiment. On may occasions I have argued that such a repeated experiment has never been done in one century of time. And that is strange because if you were successful in this, you would almost one 100% sure have won a Noble prize. And that’s what all the physics people want; a Nobel prize… A repeated experiment would validate the probabilistic nature of electron spin, but it’s just not there and nobody in the physics community gives a shit about that. That’s why so often I say these people are talking out of their neck.

At about 19 minutes into the video Dr. Jorge S. Diaz claims that a repeated SG experiment has been done by Frisch and Segré but that is just plain wrong. In the Frisch-Segré experiment they tried to rotate the spin of an electron. But it failed so to bring this up as an example of a repeated SG experiment is not allowed.

That’s funny: Einstein & Heisenberg pushed for this…

Before I show you the video I want to make a quote from the pdf on the Frisch Segré experiment. The Frish and Segre guys claimed in an article to have observed nondiabetic spin flip. I doubt if that is true but at present day in a lot of physics labs they too think the can flip electron spin in say a diamond nitrogen vacency. But I think that when this happens, they have just another electron with the opposite magnetic charge.
This is a WordPress website and I believe they have a ‘quote environment’ hanging around somewhere. So lets try:

Immediately, Heisenberg and Einstein proposed multi-stage Stern–Gerlach experiments to explore deeper mysteries of directional quantization [2]. Ten years later, Phipps and Stern reported the first effort [8], which was unfortunately discontinued owing to Phipps’ involuntary return to the US [2]. A year later, Frisch and Segrè modified the same apparatus by adopting Einstein’s suggestion on the use of a single wire instead of three electromagnets to rotate spin; they also improved magnetic shielding, slit filtering, and signal detection [2]. Despite the use of three layers of magnetic shielding for the middle stage (i.e., the inner rotation chamber), the remnant or residual fringe magnetic field was still 0.42 × 10−4 T (or 0.42 G). Rather than fight the fringe magnetic field further, they took advantage of it. The magnetic field from the wire in the middle stage cancels the remnant field to produce a magnetic null point, around which the field is approximated as a magnetic quadrupole; consequently, they successfully observed nonadiabatic spin flip [9].

Well it is now high time for the video:

In my mind or in my memory the Frisch Segré experiment failed so it is good to be corrected. But all in all you really can’t say that this was a repeated Stern Gerlach experiment. It was trying to flip the spin of an electron. And that while I think the magnetic properties of electrons are just like their electric properties: permanent and monopole.
Ok that was it for this ‘just a video post’. Thanks for your attention.

Video about the Stern Gerlach experiment, it’s good in the details.

One or two days back this video from Dr. Jorge S. Diaz came out and all in all in it’s kind it is very good. Even for me there is a lot of new stuff in although nothing of the real important things like why an inhomogeneous magnetic field was used: Otto Stern thought that the silver atoms themselves would act like tiny magnets because of the electrons going round the nucleus. I want to remark that using an inhomogeneous magnetic field when it comes to atom sized magnets makes sense, where I draw the line is the blind application to a point like particle like the electron.
So all the big hammers were already known to me yet there is a lot of cute stuff in it I had never seen. Things like the first introduction of those quantum numbers from the principle n to the magnetic number m.
In the video Jorge Diaz shows once more what the physics people use as the potential energy when a dipole magnet is placed in a magnetic field, you can see that in the picture below.

It is well known that nature loves to minimize the potential energy and here this is the case if both vectors mu and B point in the same direction. In that case the inproduct is a positive number and the minus sign guarantees the minimum of potential energy.
Last year I made a picture for repeated use during this year 2024 and in it you see the official version of an electron pair. The Pauli exclusion principle says that the magnetic numbers must differ and as such they must have opposite or anti-parallel spins. The whole problem is of course that if you calculate the potential energy where you view one spin in the magnetic field of the other and use the above expression, you get a positive potential energy. That’s weird since in the science of chemistry it is well known that the electron pair plays an important role in forming atomic and molecular bonds. Here is the sketch of the electron pair once more:

This potential eneregy isn’t minimized.

I made a similar picture for a lone electron that anti-aligns itself with an applied magnetic field:

Beside the potental energy problem, how can this be stable?

As you can see for yourself in the video below, people like Jorge Diaz never even mention that there are severe energy problems. I name that avoiding Crazyland, they only explain the things that sound logical and as soon as it becomes absurd like here with the electron pair, they just don’t talk about that.
The weird potential energy problems arise only if you think the electron is a tiny magnet. Since the year 2015 every year I became a bit more convinced that electrons are magnetic monopoles just like they are electric monopoles. All energy problems fade away fast if you do that but hey try to explain that to people like Jorge Diaz! Or for that matter all those other professional physics people out there, those weirdo’s also think that magnetic monopoles do not exist so the taks of explaining things to those people is an almost impossible task.
I also combined a few screen shots from the video with people that played some role or contributed to the Stern-Gerlach experiment. For myself I more or less like it that even a guy like Albert Einstein never realized the monopole nature of electron magnetism. But I am also well aware that this can work against me; the physics professionals will likely think that if Albert didn’t see it, it can’t be true and as such for themselves they have once more confirmed that magnetic monopoles don’t exist…

And finally the video, again in it’s kind it is a very good video:

A lot more could be said or written but lets not do that and may I thank you for your attention.

Fermilab’s muon g-2 experiment gives me a brand new energy problem.

Last week for the first time I decided to take a look at that so called muon g-2 experiment. Nothing from the preprint archive, no just a little bit lazy watching a few video’s. That’s why in this post I have 3 video’s for you.

It soon dawned on me that the Fermilab experiment was a bit strange. They use the Lorentz force to let the muons go round while the spin stays horizontal. Now muons are cousins of the electrons and the official theory is that they are tiny magnets just like electrons. And as so often observed, the professional physics people only say things that sound or look logical. All weird stuff that comes from what I name Crazyland is just not mentioned. Things from Crazyland are of course the electron pair and how is that configuration even possible?
An old experiment done in 1922 was the Stern-Gerlach experiment and there too do the experimetalists use a vertical magnetic field. (It could be that in the original experiment the field was horizontal but that’s not important for our discussion here.) What’s interesting is that if you read or see one hundred explanations for the Stern-Gerlach experiment it is always the official version that the spins align vertical or anti-vertical.
The anti-vertical stuff is also a thing from Crazyland; why would an electron turn against the magnetic field and as such gaining potential energy? But we skip that because the relevant obervation is that if you see a 100 explanations, the electrons always align in a vertical manner.

Here you see a screenshot from the first video:

In the above picture it is nicely shown what the professionals have made of it; the Hamiltonian clearly says that if electrons anti-align they gain potential energy but they never talk about that. And the expression for how an electron is accelerated in an inhomogeneous magnetic field is basically the same as say in gravity. The potential energy in a gravity field is mgh and if you differentiate into the vertical direction, that is in the direction of h, you are left with mg and that’s the force due to gravity.
I think this is BS because I think electrons (and muons) are magnetic monopoles. As such they should be accelerated by all kinds of magnetic fields and I myself don’t have experimental evidence for that. But the professional physics people don’t have evidence for their claim that in a homogeneous field electrons don’t get accelerated. Since 2014 I never stumbled upon any experimental result in that direction. It’s about time to go to the first video. It is from a channel named Abide By Reason and that’s a very good name only he doesn’t do it. There’s not much reason found but it’s the official explanation for the SG experiment.

Now for the Fermilab muon g-2 experiment: Despite the vertical magnetic field for some strange reason non of those muons change their magnetic orientation. Even stronger, the folks from Fermilab are so über-ultra-mega smart that they know that after one rotation in the ring, the muon spin has furned about 12 degrees more…
Of course nobody explains why that spin stays horizontal even though the vertical magnetic field has a strength of about 1.5 Tesla. But in this experiment they need that spin is horizontal stuff so like all physics people at some time they have to talk out of their neck. Physics is the science of talking out of your neck while maintaining that you are a five sigma kind of science.

Where is the torgue on the muon gone? Why is it neglected in the explanation?

The above screenshot is from a lady that has a video channel named “Think Like A Physicist” and sometimes that’s a good idea but when it comes to electron spin you better try to think as a logical person.
Video title: Measuring Muon g-2.
Link used: https://www.youtube.com/watch?v=IHgaapwwLN0

Now the lady that thinks like a physicist claims the magnetic field is vertical but in the last 9 years I have seen all kinds of weirdo’s making all kinds of claims when it comes to this or that. So again avoiding difficult to read pdf’s from the preprint archive there was indeed a video from Fermilab herself validating the magnetic field is vertical.
Please remark that from the outside when you look at that ring the Fermilab got from Brookhaven, it is hard to see what kind of magnetic field is inside. The video is about 3 minutes long.
Video title: Muon g-2 Experiment Shimming.
Link used: https://www.youtube.com/watch?v=4HlKN0rfdKA

That was it for this post, in this post we had zero people explaining that quantum states like electron spin are just so fragile. But we had some people just ignoring muon spin doesn’t flip even when it’s going round and round in some Fermilab experimental setting.

Likely the next post is about prime numbers in the plane of elliptic complex numbers. So it’s just some two dimensional stuff with numbers and integers. A lot of prime numbers like 7 are not elliptic primes. They can be factored inside the elliptic plane by two smaller primes. So that’s all very interesting but also time consuming but all in all in a week or two it should be finished.

In the picture below you can see what natural primes survive the elliptic onslought. They are the ones with ellipses that don’t have integer solutions.

As always thanks for your attention .

On electron spin and the conservation laws for total spin and angular momentum.

This is another very short post, the main text is 2 pictures and there is an additonal Figure 1 added. It is about the impossibility of having both spin and angular moment conserved in the electron-positron pair creation process. This is under the assumption that electrons are actually spinning and that this spinning causes the official version of electron spin: the tiny magnet model.
Of course there is nothing spinning, back in the time Wolfgang Pauli himself calculated that even if you concentrate all the electric charge of an electron on it’s ‘equator’, it must spin so fast that this is a huge multiple of the speed of light. A long time ago I did such a calculation myself, it is not very hard to do but I skipped it in this because that calculation has nothing to do with the content of the post. So you can easily do that yourself, after all it is just some advanced high school physics and if you do that the answer will of course depend strongly on how large you think the electron is if you view it as a tiny billiard ball.
The word ‘spin’ is a terrible wrongly chosen word to describe the magnetic properties of the electron. I have wondered so often as why the physics people think year in year out that the electron is a tiny magnet while you really do not need much brain power to see that this is nonsense. Beside all those fundamental energy problems there are also problems with the above mentioned conservation laws. The fact we have today so many people from the physics community talking about ‘the spinning electron’ is caused in part by that original stupid choice to name it ‘spin’. After all this word strongly suggests that we are dealing with tiny magnets, every electron must be a tiny bipolar magnet while if you view them as magnetic monopoles you don’t have all these weird energy problems.
In case you are new to this website: I think that electrons are magnetic monopoles, just like their electric charge, and furthermore this magnetic charge is permanent and as such it is impossible to flip the spin of an electron.
And if you are from the physics community yourself, may be you need to vomit from the idea that electrons are not tiny magnets. Or may be you pity me because I am a middle aged man and you think I want to save physics or the wider community known as humankind from wrong doing when it comes to electron spin. Well I have to disappoint you: I don’t give a shit about such stuff, ok in the beginning I did but after a few years I realized that likely physics will be trapped a few centuries longer before they start using logical thinking when it comes to electron spin.

In the two pictures below I also experiment a bit with using other backgrounds, here you see something like a big hand made with some generative AI video thing. May be it is time to replace my old background made with my old Windows XP computer by some fresh stuff.

This intro is getting far to long because I wanted this post to be short. So let me hang in the pictures and here we go:

In Figure 1 below all you see are two images I downloaded from the internet while using the search phrases as written above. You just never see those spinning arrows if you search for electron-positron pair creation. It is as so often: As soon as we get into crazyland, the physics people just don’t talk about it.

Figure 1: Never spin ‘explained’ via arrows in pair creation.

Well yes, this is indeed the end of this post.

A bit more on the bonding and non-bonding electron pairs in chemistry.

Another short post, this time again on the totally crazy so called bonding and non-bonding pairs in theoretical chemistry. It is one of the many energy problems that come along if you want electrons to be tiny bipolar magnets. And if you view the electrons as magnetic monopoles, in that case all of a sudden you don’t have these kind of weird energy problems.

Lets dive into it, this post is 3 images long and here we go:

That’s more or less all I had to say today, if you view the magnetic properties of electrons as monopole magnets just like their electric properties the standard electron pair becomes the lowest (potential) energy state. Before I close this post let me quote from a wiki an interesting detail about the non-bonding electron pairs: they have a tendency to be outside the so called ‘bonding region’ between atoms in molecules. Once more this only makes sense when electron carry a monopole magnetic charge.

In theoretical chemistry, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more nodes in the bonding region between the nuclei. The density of the electrons in the orbital is concentrated outside the bonding region and acts to pull one nucleus away from the other and tends to cause mutual repulsion between the two atoms. This is in contrast to a bonding molecular orbital, which has a lower energy than that of the separate atoms, and is responsible for chemical bonds.

Here is the link to the wiki I quoted from:
https://en.wikipedia.org/wiki/Antibonding_molecular_orbital

That’s it, see you in some other future post or enjoy some old posts on say the 4D complex numbers because they are beautiful and that is something we cannot say about the behaviour of the average physics professor with their weird fixation on electrons as tiny magnets…

On a video about spin ice & some additional remarks.

A couple of weeks back I already showed this video from Dr. Erica Carlson on the other website. I did select that video because in the second half of that video she talks about electron spin configurations that minimize the energy in stuff that is known as spin ice.
Since all those energy problems that I have with viewing electrons as bipolar tiny magnets are always skipped, I decided to use this video as a short post on magnetism. In videos like this the pattern is always the same: at the surface it all looks logical like in this video the spin configuration in that stuff known as spin ice. But video after video I have seen over the last years, always when we need to look at crazyland they always skip that. When the energy stuff gets crazy, they just skip it. Now this is absolutely not some form of a conspiracy, these people like Erica simply believe the bipolar magnetic electron is true and as such they have a blind spot into the problems: They just don’t see the problems because of their blind spot.

In the year 2015 I started to doubt that electrons were tiny magnets with two magnetic poles. I started doubting that after I tried for myself to explain the results of the so called Stern-Gerlach experiment. In my view the results were only explainable if we use magnetic monopole electrons. A few days later reading all those official explanations I understood I had to be cautious. And at the begining back in 2015 I knew nothing about electron spin, all I knew was that people from physics thought they were tiny (bipolar) magnets. It’s been a long journey from there back in 2015 and it will also be a long long journey going from our present year 2024. After all the belief that electrons are tiny macroscopic magnets is deeply rooted in 100% of the physics community.

In this post, for the first time since 2015, I included a simple expression about how the professional physics professors view the potential energy of electrons related to magnetism. It is somewhere below and it is the same as we have for macroscopic magnets like say two bar magnets.
If you hold two bar magnets south to north pole, that is the minimum potential energy because it costs energy to separate them. And if you hold two bar magnets say north pole to north pole, that is the situation of high potential energy.

The post itself is four pictures and two additional figures and of course the perfect video from Dr. Erica Carlson. Say for yourself, this video is a perfect 10 with all kinds of animations I can only dream of. Ok ok, there is just one tiny tiny error in it: electrons are not tiny magnets.
But for the rest it’s a “PERFECT 10” kind of video.

Well bipolar physics freaks: what is your explanation in detail?

That was more or less the end of this post but I made one more picture depicting another big energy problem that the official version of electron spin has: The behavior of a single electron in an applied magnetic field.

After all if it were true that electrons are tiny magnets, if you apply a magnetic field to electrons shouldn’t they all perfectly align with that magnetic field and as such fall into their lowest potential energy state?

Yes in an ideal world they should, but we live in a world where we not only have a lot of professional physics professors but also television physics professors. And they never talk about the energy problems there are with the electron as being tiny magnets.
So this is a strange strange world where physics just ingores simple problems like the last picture of this post:

Oh yes the stability problems we have if it were true that electrons are tiny magnets. As you see in the video it is always skipped and their brains never go down that route… It is what it is and here is the video:

Erica knows how to flip a spin…

Lets leave it with that, the next post will be about matrix representations of conjugtes of 2D complex numbers. They are weird and also lovely now I have my new method of understanding the process of conjugation.
And as always thanks for your attention and not falling asleep before you read these last words of this post.

Nobel prize for a sequential Stern Gerlach experiment? Nope, nada, njet, nein & NEE!

This is now year nine or may be the tenth year that I started doubting that electrons were tiny bipolar magnets because it makes much more sense that they are magnetic monopoles. Over the years I have found out that logic just does not work and given the fact that physics people get a salery from tax payer money, that is weird behavior.
But physics professors behave just like math professors who after 33 years of doing just nothing will keep on doing that and never ever talk about the three dimensional complex numbers. What explains that kind of behavior, after all it’s all tax payer money so they should be a bit more humble don’t you think? The way I see it is that university people like math and physics professors are some elite. And I don’t mean an elite in the sense they are the very best at their science, no it’s just a collection of overpaid snobs. You must not think I am emotional or so by using the word snobs, no it’s a cold hearted classification of their behavior.
It is now 102 years since the original Stern Gerlach experiment and there is boatloads and boatloads of theory of how electrons should behave in case such an experiment is repeated (that is a squence of those magnetic fields) and it is easy to understand the very first experimental physics human that would do such a sequential SG experiment would likely be rewarded a Nobel prize. And in the physics community the Noble prize is what they all dream of. So in a century of time without doubt on many occasions such an attempt must have been undertaken.
But there is no trace of any such experiment in the literature, the only experiment that was done was by Frisch and Segrè where they tried to flip the electron spin and that all failed big time. But when building their experimental setup Frisch and Segre got advice from Albert Einstein and likely because of that they got their (non) results published and as such we can find it back in the present day literature.

What I found strange in the last 10 years is that a lot of scientists actually believe such experiments have been done. That goes for physics but also chemistry, a lot of them talk like such experiments have actually been done. Here is a link that abundantly shows that the author thinks such experiments have actually been done:
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/The_Live_Textbook_of_Physical_Chemistry_(Peverati)/22%3A_Spin/22.02%3A_Sequential_Stern-Gerlach_Experiments

Now why should a succesful sequential Stern Gerlach experiment lead to an almost 100% probability of getting a Nobel prize? That is easy to explain: It would validate in a deep manner that quantum states like spin states are probabilistic in nature and as such would be a fundamental thing in say all the present day attempts there are in building quantum computers.

Another way of understanding there are just no successful sequential Stern Gerlach experiments done in the last 100 years is simple to do: Go to Youtube and search for it, all you find is animations that explain how it “should work”. But none of those videos give a hint of an experiment actually done…

Is it true there are no Nobel prizes rewarded in the last 100 years related to a repeated or sequential SG experiment? Well in this year 2024 the Nobel prize committee has a website and guess what? They have a search applet for their very website. If you search for “Stern Gerlach” you get something like 12 results and if you serach for “Stern Gerlach experiment” you only get 6 results. None of those results says anything about experimental validation of all that spinor crap or anything that shows you can actually flip the magnetic spin of an electron. I made a picture for the other website as you can see below:

If you want you can go to the website of the Nobel prize committee and look for yourself if you can find such a prize rewarded. Here is the link: https://www.nobelprize.org/.
It’s all a big bunch of crap: Electrons are not tiny magnets, they carry magnetic charge just like they carry electric charge.

I am very well aware that logic does not work, but say to yourself about the crap of the electron pair they have over there in the physics community: The Pauli exclusion principle says that those electrons must have opposite spins so what does that mean if it is true that electrons are tiny magnets?
Well if they have anti-parallel or opposite spins, doesn’t it look like this:

But again logic does not work so I do not expect that in this year 2024 the physics people will stop talking their usual bullshit. No way, after all as a social community they are just another bunch of overpaid snobs…

After having said that, after about only one century of time there is only recently an English translation made of the publication of the original Stern Gerlach experiment. The translation is done by Martin Bauer and here is a link to the pdf as you can find it on the preprint archive

The Stern-Gerlach Experiment
Translation of: “Der experimentelle Nachweis der
Richtungsquantelung im Magnetfeld”

Link used: https://arxiv.org/pdf/2301.11343.pdf

That was it for this post, as always thanks for your attention.