Category Archives: Exponential circle

On the work of Shlomo Jacobi & a cute more or less new Euler identity.

For a couple of years I have a few pdf files in my possession written by other people about the subject of higher dimensional complex and circular numbers. In the post we will take a look at the work of Shlomo Jacobi, the pdf is not written by him because Shlomo passed away before it was finished. It is about the 3D complex numbers so it is about the main subject of this website.

Let me start with a link to the preprint archive:

On a novel 3D hypercomplex number system

Link used: http://search.arxiv.org:8081/paper.jsp?r=1509.01459&qid=1603841443251ler_nCnN_1477984027&qs=Shlomo+Jacobi&in=math

Weirdly enough if you search for ‘3D hypercomplex number’ the above pdf does not pop up at all at the preprint archive. But via his name (Shlomo Jacobi) I could find it back. Over the years I have found three other people who have written about complex numbers beyond the 2D complex plane. I consider the work of Mr. Jacobi to be the best so I start with that one. So now we are with four; four people who have looked at stuff like 3D complex numbers. One thing is directly curious: None of them is a math professional, not even a high school teacher or something like that. I think that when you are a professional math professor and you start investigating higher dimensional complex numbers; you colleagues will laugh about it because ‘they do not exist’. And in that manner it are the universities themselves that ensure they are stupid and they stay stupid. There are some theorems out there that say a 3D complex field is not possible. That is easy to check, but the math professionals make the mistake that they think 3D complex numbers are not possible. But no, the 2-4-8 theorem of say Hurwitz say only a field is not possible or it says the extension of 2D to 3D is not possible. That’s all true but it never says 3D complex numbers are not possible…

Because Shlomo Jacobi passed away an unknown part of the pdf is written by someone else. So for me it is impossible to estimate what was found by Shlomo but is left out of the pdf. For example Shlomo did find the Cauchy-Riemann equations for the 3D complex numbers but it is only in an epilogue at the end of the pdf.

The content of the pdf can be used for a basic introduction into the 3D complex numbers. It’s content is more or less the ‘algebra approach’ to 3D complex numbers while I directly and instantly went into the ‘analysis approach’ bcause I do not like algebra that much. The pdf contains all the basic stuff: definition of a 3D complex number, the inverse, the matrix representation and stuff he names ‘invariant spaces’. Invariant spaces are the two sets of 3D complex numbers that make up all the non-invertible numbers. Mr. Jacobi understands the concept of divisors of zero (a typical algebra thing that I do like) and he correctly indentifies them in his system of ‘novel hypercomplex numbers’. There is a rudimentary approach towards analysis found in the pdf; Mr. Jacobi defines three power series named sin1, sin2 and sin3 . I remember I looked into stuff like that myself and somewhere on this website it must be filed under ‘curves of grace’.

A detail that is a bit strange is the next: Mr. Jacobi found the exponential circle too. He litarally names it ‘exponential circle’ just like I do. And circles always have a center, they have a midpoint and guess how he names that center? It is the number alpha…

Because Mr. Jacobi found the exponential circle I applaud him long and hard and because he named it’s center the number alpha, at the end I included a more or less new Euler identity based on a very simple property of the important number alpha: If you square alpha it does not change. Just like the square of 1 is 1 and the square of 0 is 0. Actually ‘new’ identity is about five years old, but in the science of math that is a fresh result.

The content of this post is seven pictures long, please read the pdf first and I hope that the mathematical parts of your brain have fun digesting it all. Most pictures are of the standard size of 550×775 pixels.

Yes all you need is that alpha is it’s own square.

Ok ok, may be you need to turn this into exponential circles first in order to craft the proof that a human brain could understand. And I am rolling from laughter from one side of the room to the other side; how likely is it that professional math professors will find just one exponential circle let alone higher dimensional curves?

I have to laugh hard; that is a very unlikely thing.

End of this post, see you around & see if I can get the above stuff online.

Part 22: The eigenvalues of the 4D complex number tau.

This post took me a long time to write, not that it was so very difficult or so but lately I am learning that graphics program named GIMP. And that absorbs a lot of time and because I am only sitting behind my computer a few hours a day, doing GIMP goes at the expense of writing math…

I always make my pictures with an old graphics program named Picture Publisher 10. It is so old that on most windows 7 and windows 10 it does not run but it has all kinds of features that even the modern expensive graphics programs simply still don’t have. Silently I was hoping that I could use GIMP for my math texts and yes that could be done but in that case I have to use old background pictures forever. Or I have to craft a ‘new style’ for making the background in the math pictures that can last at least one decade.

But let’s not nag at what GIMP cannot do, if you install just one large addon you have about 500 filters extra and my old program PP10 comes from an era when the word ‘addon’ was not a word used ever. Before we jump to the math, let me show you a nice picture you can make with the tiling filter inside GIMP. It is about my total bicycle distance since I bought this bicycle computer, it says 77 thousand km so the Tour the France racers can suck a tip on that:

Just one tile already looks nice.
And this is how four of these tiles look.

Ok, let us look at the math of this post. This is part 22 in the introduction to the 4D complex numbers. The 4D complex numbers have three imaginary units, l, l^2 and l^3. And the stuff that makes it ‘complex’ is the fact that l^4 = -1, you can compare that to the complex plane where the square of the imaginary unit equals -1.

On the complex plane, if you know what the logarithm of i is, you can use that to find the exponential circle also known as the complex exponential. This is what the number tau always is in all kinds of spaces: It is always the logarithm of the first imaginary unit that has a determinant of +1. In this post we will calculate the eigenvalues of this important number tau. That will be done with two methods. In the first method we simply use the eigenvalue functions, plug in the number tau and voila: out come the four eigenvalues. In the second method we first calculate the four eigenvalues of the imaginary unit l and ‘simply’ take the logarithm of those four eigenvalues.

It is not much of a secret that my style of work is rather sloppy, I never order my work in theorems, lemma’s or corrolaries. It is not only that such an approach if too much a straight jacket for me, it also frees me from a lot of planning. I simply take some subject, like in this case the eigenvalues of the number tau and start working on explaining that. While writing that out there always comes more stuff around that I could include yes or no. In this post what came around was that only after writing down the four eigenvalues I realized that you can use them to prove that the exponential curve (the 4D complex exponential) has a determinant of 1 for all points on that curve. That was an important result or an important idea so I included it because that makes proving that the determinant is 1 much more easy.

Now a few posts back with that video from that German physics guy Alexander Unzicker I said that he (and of course all other physics professionals) could always use the 4D complex exponential curve for the ‘phase shifts’ that those physics people always do. But for doing such 4D ‘phase shifts’ or unitary transformations in general, you need of course some kind of proof that determinant values are always +1. Well Alexander, likely you will never read this post but below you can find that very proof.

The previous post was from the end of August and now I think about it: Have I done so little math during the last four weeks? Yes there were no results simply left out, it was only penning down these eigenvalues of tau and the idea you can use these eigenvalues for proving the 4D exponential curve always has a determinant of 1. It is amazing that GIMP can hinder the creation of fresh math… ­čśë

The math pictures are seven in number, all in the usual size of 550×775 pixels. I hope you like it and see you in the next post.

So these are the four eigenvalues of the number tau and based on that the four eigenvalues of the 4D complex exponential for a values of time.

That’s it for this post. See you in a future post.

Added on 27 Sept 2020: This proceeds the two pictures made with GIMP that started this post. I just made the whole stuff on a cube (actually it is a beam because the starting picture is not a square). It is amazing how good such filters in GIMP are:

That does not look bad at all!

Ok, you are now at the real ending of this post.

Definition of the 4D Fourier series.

I want to start with a bit of caution: In this post you can find the definition of the 4D Fourier series. It looks a lot like the definition as on the complex plane. But I still did not prove all those convergence questions. And I also do not remember very much from the time when I had that stuff as a student (that was about 30 years ago). So I don’t know if I will be able to make such proofs about convergence and what kind of functions you can use to make a Fourier series from etc etc.

Yet in this post I define a set of possible signals that I name ‘pure tones’ and these clearly have a 4D Fourier expansion because by definition they have a finite number of non-zero Fourier coefficients. Of course when you only have a finite amount of non-zero coefficients, you don’t have any kind of convergence problem. So for the time the convergence problems are avoided.

In this post, number 154 already, I hope I demenstrated enough that the basis functions used in the definition are all perpendicular to each other. After all that was a nasty hurdle we met when it was tried with just the four coordinate functions of the 4D exponential curve as our basis vectors. So we do not meet that problem again using the exponential curve as a whole. If I denote the exponential curve as f(t), the basis functions we use are basically f(nt) where n is a whole number. Just like in the previous posts I always use the notation f(t) when the period is related to the dimension and g(t) when the period is different. Here I use of course a period of two pi because that is convenient and it makes the coordinate functions more easy to write out: the first one is now cos(t)cos(2t) and the other three are just time lags of the first one. But if you want to write g(t) as an exponential, because of the period it now looks a bit more difficult compared to just e to the power tau times t.

For myself speaking I have no idea at all if crafting a Fourier series like this has any benefits of using just the definition as on the complex plane. After all I only have more or less basic knowledge about the use of Fourier series, so I just don’t know if it is ‘better’ in some regards and ‘worse’ in others.

At last without doubt under my readers there will be a significant fraction that wonder if those 4D complex number system is not some silly form of just the complex plane? After all if that 4D space is based on some imaginary unit l with the property that now the fourth power l^4 = -1, how can that be different from the complex plane? The answer to that lies in the logarithm of the first imaginary unit l. If this 4D space was just some silly extension of the complex plane, this log of l should be nicely bound to i pi/4 where i is of course the imaginary unit from the complex plane. But log(l) is the famous number tau because with that you can make the exponential curve f(t) = e^(tau t). Basically the main insight is that i pi/4 makes the complex exponential go round with a period of four because i^4 = 1 and the 4D number tau makes the exponential curve go round with a period of 8 because l^8 = 1.

This post is six pictures long, all 550×775 pixels in size.

The next picture is not written by me, I just did a ┬┤copy and paste┬┤ job.
Ok, we proceed with the ┬┤pure tone┬┤ stuff:

As usual I skipped a lot of stuff. For example, how did Fourier do it? After all at the time all this stuff with inner products was poorly developed or understood. That alone would be a cute post to write about. Yet the line of reasoning offered by Joseph Fourier was truly brilliant.
In case you are lazy or you want to avoid Google tracking you, here is a link to that cute symbolab stuff: symbolab.com
Link used: https://www.symbolab.com/solver/fourier-series-calculator

Ok, that is what I had to say for this tiny math update.

Calculation of the circular exponential circle via ‘first principles’.

Oh oh, this is one of those posts where I only calculate in the 3D circular numbers while I classify it as 3D complex numbers. In the past when I made those categories on this website I did not want to have too many categories so that is why I only have 3D complex numbers as a category.

All in all this post (number 146 already) is not extremely important because over the years I have given many proofs that the parametrization for the exponential circle indeed fulfills all those equations like the sphere-cone equation of the fact the determinant is always one. On the other hand, if you have an important mathematical object like the exponential circles, it is always good to have as many proofs as possible. Just like there are many proofs for the theorem of Pythagoras, it would be strange if we only had one proof and nobody cares about more proofs to that theorem that more or less the central to a giant mountain of math.

What do I mean with ‘first principles’? Very simple: that is the summation formula for the exponent of a linear operator or the matrix exponential if you want. In this post I use a somehow slightly different number tau; I use a number tau that gives a period of 2 pi for the exponential circle. The reason is simple: that makes the long calculation much more readable.

Another thing I want to mention is that the long calculation is nine lines long. For myself when I read the works of other people I do not like it if calculations go on and on and on. I always try to avoid too long calculations or I just don’t write posts about them. Almost nobody reads the stuff it it’s too long and gets too complicated so most of the time I simply skip that. Beside that there is always 0% feedback from the mathematical community, so although I always year in year out try to keep it so simple that even math professors can understand it, nothing happens. Just nothing, so after all those years it is not much of a miracle I don’t want to engage with these overpaid weirdo’s at all. Likely if you are born stupid you will die stupid & I have nothing to do with that. Mathematics is not a science that is capable of cleaning itself up, the weirdo’s keep on hanging to their fantastic quaternions and their retarded ideas of what numbers & complex numbers are. Too much money and too much academic titles have not lead to a situation where the science of math is capable of cleaning itself when needed.

Enough of the blah blah blah, after all the physics professors have the same with their electron spin: where is your experimental proof that the electron is a magnetic dipole? For over five years nothing happens except a lot of weird stuff like quantum computers based on electron spin…

This post is five pictures long, for me it was cute to see how those three cosine functions slowly rise from the start of the long calculation. Also of importance is to notice that I had to use the simple formula for cos(a + b) = cos(a)cos(b) – sin(a)sin(b) that comes from the exponential circle in the complex plane. Just once more showing that 3D complex & circular numbers are indeed emerging from the 2D complex plane. Not that the math professional will react, but anyway…

Let’s go to the five pictures:

I think you must calculate them for yourself, grab a pencil and some paper and use the
fact that the circular multiplication uses j to the third power is 1.

Again, this is not a ┬┤very important┬┤ post. Given all those results and proofs from the past it is logical such a long calculation has to exist. It┬┤s relevance lies in the fact you simply cannot have enough proofs for the calculation of parametrizations of the 3D exponential circle.

Let me leave it with that. See you in the next post.

Three video’s for killing the time if needed.

This time a somewhat different post, just 3 video’s I thought are interesting to share for their own reasons. In the first video the American television physics professor Brian Greene goes beserk on the beauty of the exponential circle in the complex plane… Brian, like so many others, do not know what they are missing. So many spaces have exponential circles and curves and indeed they are beautiful.

The second video is about a question that is often asked: Is math invented or is it a discovery? I think this is a false way of looking at math, if you replace the word ‘math’ by ‘food’ you already understand this is a weird question: Is food invented or is it discovered? In my view that often goes hand in hand but opinions vary wildly on this subject. The video is an interview with the UK math professor Roger Penrose. I included this video because back in the 80-ties of the previous century Roger had written some books on the things known as spinors. A lot of so called scientists think that spinors have something to do with electron spin, there are even weirdo’s that think after the electron has encircled the nucleus once it’s spin state is altered so that after two rounds the electron has it’s original spin back… Oh oh for people like Roger and those others it will be a long way in understanding the electron cannot be a magnetic dipole. In all ways possible that is not logical. For example the unpaired electron is not magnetically neutral while the electron pair is. And there are a whole lot more examples to be given showing electrons simply can’t be magnetic dipoles. And you only have to use the thing called logic for that; no weird quantum mechanical stuff but just a magnetic charge on the electron gives much better results if you use the thing called logic.

The third video is about a weird line of reasoning that I have observed in many video’s. It is about explaining how those jets form that emerge from black holes and their accredion disks. The reasoning is that the plasma in the accretion disk goes around the black hole and if a charge goes round it produces a magnetic field & that is all explanation given always. That is nonsense of course, even spinning metals like when you are drilling a hole with your drill machine never produces a magnetic field because for every electron that goes round on average also a proton goes round and all in all there is no overall magnetic field created. But if the electrons are magnetic monopoles, they will have much more acceleration compared to the far more heavy protons and as such an accretion disk around a black hole should be positively charged all of the time and that explains why the magnetic fields are so strong over there.

Ok, I crafted 8 pictures from the stuff. For example I made a 4D generalization of the 3D outer product while explaining such math is an invention and not a discovery. After the 8 pictures I will post the three video’s that aroused my attention for one reason or another. Have fun reading it.

The link to Reason 82 as why electrons cannot be magnetic dipoles is
08 Feb 2020: Reason 82: More on solar flares.
http://kinkytshirts.nl/rootdirectory/just_some_math/monopole_magnetic_stuff05.htm#08Feb2020

And here are the three Youtubers to kill the time.

Ok, let┬┤s try to upload this bunch of stuff and see what happens.

Probability amplitudes on the 3D exponential cones (circular and complex version).

All in all it was a nice day today. Brewing is completed and tomorrow the wort can go into the fermentation bottles and the wonderful process of fermenting can take place. For those of you that also like to brew: A couple of months back I found a cute video explaining that you can also brew beer without cooking it. And I was like seeing water burning or I was like a professional math professor understanding 3D complex numbers for the very first time in their life… Anyway if you are interested search for ‘Raw ale no boil brewing’ on Youtube. It is of interest because if you brew without boiling, only after that you understand what you usually cook away in things that might taste good (or bad).

But let’s go to this post: It is about probability amplitudes as they are used in quantum physics where all those kind of amplitudes are multiplied against their conjugate and that gives a real positive number known as the probability. If you write it in polar coordinates on the complex plane, it is easy to see that those probability amplitudes can have all kinds of phases (the argument of the complex plane number). So for that to work on 3D complex or circular numbers, it would be great if you can write it more or less like the polar coordinates as in the complex plane. And that is easy to do in 3D space: Once you have found and also understand the exponential circles, it is evident that all numbers on those exponential cones are some real multiple of a number from the exponential circle.

As such the numbers found on the exponential cone can be written just like the polar stuff from the complex plane, also now the r as used in polar coordinates can also be negative. That is a strange result because for millions of years we were always indoctrinated by a positive r … ­čśë

Another important difference with the complex plane lies in the fact that the complex plane is closed under addition. That is obvious, but it is also obvious that on a cone it is very different. Most of the time if you add up two numbers you are either inside or outside the cone. But probability amplitudes are always multiplied against their conjugate and added up only later, so we can still use the exponential cone for things like that. I don’t see that ship stranding, so let’s do it.

I also want to remark I am using the so called ‘pull back map’ once more. The professional professors also have a pull back map but that is a very different thing compared to what I use. So don’t be confused by that: the way I use it is to fix higher dimensional exponential circles (and curves) on the exponential circle in the complex plane. (This for fine tuning the period in time and stuff like that, or for understanding why the numbers are what they are: WTF that square root of 3 in it???

This post is 7 pictures long, most are the usual size of 550×775 pixels. At last I want to remark that for myself speaking I do not know if there is any benefit in trying this kind of use of 3D complex and circular numbers. It is funny to think about positive and negative values for r like for example in electron spin or a wave function for the electron pair. But I just do not know if this add any value or that you can use the complex plane only and miss nothing of all you could have learned.

Ok, here we go:

Ok, that was it for this post. Till updates my dear reader.

A new de Moivre identity.

First a household message: In about two weeks time this website should go to new very fast servers. In order for that to work properly I have to do all kinds of things that I have never done before. Stuff like updating PHP. Ok, that does not sound too difficult but as always the work explodes because first I have to backup everything. And before I can backup everyting I need a new ftp account. The only luck is I still have a running ftp client on my own computer…

In case this website is gone in two weeks, somewhere I got lost in the woods. And there is no hurry: this math website is just a hobby of me. An important hobby because it is a bit of exercise for the brain…
End of the household message.

What is the yeast of this post? Historically the de Moivre identity (or theorem) predates the very first exponential circle on the complex plane. If you use the exponential circle, a proof of the de Moivre identity becomes very very easy. In this short post we will use the 3D exponential circle for circular numbers. Two posts back I showed you a possible parametrization via those 3 cosine expressions, in this post we use those parametrizations to formulate a 3D de Moivre identiy.
Because we already have an exponential circle, we do not need to give a rigid math proof for this identity. Once you have and exponential cricle, stuff like that comes for free along with it…

As usual I skipped a lot of things while writing this post. For example I skipped using those modified Dirichlet kernels. I skipped giving the 4D de moivre identity for the 4D complex numbers. All in all I was satisfied to cram this all in a very short post; only three pictures long!
In case you are still reading this while having no clue whatsoever what a de Moivre identiy is, here is some stuff from brilliant.org:
De Moivre’s theorem
Http stuff in the link: https://brilliant.org/wiki/de-moivres-theorem/

Ok, only three pictures long. Here we go:

That was it for this post. If I don’t change plans, in the next post we will look at the 3D exponential cone because on that cone you can do all those quantum probability calculations just like in the 2D complex plane. But before that I have to go though that horrible PHP update…

So see you in the next post or let’s split indefinitely and end this stupid website for no reason at all… ­čśë

Two parametrizations for 3D exponential circles.

It is about high time I post the solution in parametrization form of those five equations from 03 Oct 2019. That is almost 2 months back and oh how ashamed am I for my laziness… But for me math is a hobby, an important hobby but a hobby anyway. So other hobby’s are allowed to interfere with my little math hobby.

This post is 10 pictures long and at the end there is a horrible bad video from the Youtube channel Seeker. Begin this week I crossed that video with an intriguing title; Could These Numbers Unravel New Dimensions in Space? I was just curious but it is that Cohl Furey stuff again. It is an attempt to explain particle physics via complex number, quaternions and octonions… What do they have in common? These number systems are always fields that means all non-zero numbers have an inverse. Why the professional math professors find that so important is unknown to me, it is more like they have nothing else in the toolbox. If you are interested you can find the Cohl Furey video’s on Youtube.

In this post I too write about things that are common in the complex plane, complex and circular 3D numbers and 4D complex numbers. You can use the modified Dirichlet kernels as the building blocks for all possible exponential circles or in the case with 4D complex numbers: the exponential curve (in 4D space the curve is in a 3D hyper plane).

But I also wanted to show you the original cosine solution that I found years ago. To this day it is still amazing that the cosine can pull it off; that the cosine can be a building block for a 3D exponential circle. Next year it will be three decades ago when I found the 3D complex numbers and got interested in them. At present day you can wonder why there is never a healthy response from the math communuty. It is all very logical: if there is no healthy response that means the math community in itself cannot be healthy. It is just a community of perfumed princes and that’s it.

After so much blah blah it is high time to go to the ten pictures:

So from the complex plane in two dimensions to 4D complex space; a binding element is how you can use the modified Dirichlet kernels and their time lags to construct these very interesting parametrizations. Of course there is much more that binds those spaces together; the matrix representations are all very similar, just like the eigen values and eigen vectors. But above 2D it is never a field. And again why the professional math professors have this weird fixation on fields is completely unknown to me.
At last, here is that wonderful video that will make your toes curl

End of this post and thanks for your attention!

Teaser picture for the next post.

After a lot of rainy days it was perfect weather today for the time of the year. It has been 3 weeks already since the last post and it is not that I have been doing nothing but the next post still isn’t finished. I told you that we would be looking at a parametrization that solves all 5 equations from the last post. So let me give you the parametrization in the teaser picture below. I also included the parametrization based on the modified Dirichlet kernels, by all standards the discovery of those modified kernels was one of the biggest discoveries in my study of higher dimensional number systems. To be precise: I found the first modified Dirichlet kernel years ago when I studied the 5D complex space.

In the last post I may have sounded a bit emotional but that is not the case. I am more or less one 100% through with the behavior of the so called math professors. They are incompetent to the bone and although that is not an emotional thing, it is that coward behavior that I do not like in those people. No, if it is highly overpaid, utterly incompetent and on top of that day in day out a coward, better show them the middle finger.

After having said that (I wasn’t expecting an invitation anyway) let’s look at the teaser picture because it is amazing stuff. I remember when I wrote down the parametrization for the very first time. At the time I did not know if the cosine thing would work because say for yourself: if you have a periodic function and you make two time lags of it, how likely is it they will form a flat circle in 3D space? But the cosine together with the two time lags does the trick because it is not hard to prove the parametrization lies in the plane with x + y + z = 1.

Ok, here is the cute parametrization for the 3D exponential circle:

The cosine & the modified Dirichlet kernel parametrizations

I think next week everything is ready so likely I can finally upload the next post. So thanks for your attention and till updates.

The sphere-cone equation in a matrix notation.

It is about time for a new post on 3D numbers, circular and complex. In this post I write the sphere-cone equation in a matrix notation so see the previous post on conjugates if you feel confused. The sphere-cone equation gives us two equations, as the name suggests these are a sphere and a cone and on the intersection we find the famous exponential circle.

Beside the sphere-cone equation I also demand that the determinant equals 1, now we have three equations and every intersection of those 3 equations has as it’s solution the exponential circle. Can it become more crazy? Yes because it is possible to factorize the third degree determinant into a linear and a quadratic factor. Those factors must also be 1 and now we have five equations! And since you can pick 10 pairs out of five, we now have 10 ways of solving for the intersection where the exponential circle lives…

It is strange that after all these years it is still easy to find 10 video’s where so called ‘professional math professors’ sing their praise upon the exponential circle in the complex plane. They really go beserk over the fact that e to the power it gives the cosine and sine thing. And after all those years still silent, yeah yeah those hero’s really deserve the title of honorable shithole… It is honorable because they often have relatively large salaries and they are shitholes because of their brave behavior when it comes to 3D complex numbers. Bah, I am getting a bad taste in my mouth when I think about the behavior of professional math professors. Let me stop writing about that low form of life.

This post is 8 pictures long. May be, I have not decided yet, is the next post about parametrizations of the exponential circle. In these 8 pictures I work out the case for the circular multiplication, that is the case where the imaginary unit j behaves like j^3 = 1. At the end I only give the 3D complex version of the matrix form of the sphere-cone equation and the rest you are supposed to do yourself.

Ok, again do not confuse this with quadratic forms. A matrix equation as written above has a real and two imaginary components while quadratic forms are often just real valued.

Let┬┤s try to upload this stuff. See you in the next post.